Огляд методів розв’язання контактних задач в’язкопружних композиційних оболонок
Ключові слова:
в’язкопружність, ортотропія, ядро релаксації, ряди Проні, зсувна функція, контактна задачаАнотація
Представлено аналіз існуючих методів розв’язання контактних задач анізотропних в’язкопружних композиційних оболонок. Описана історія застосування та розвитку композиційних матеріалів. Встановлено, що на даний момент розроблені моделі в’язкопружної поведінки полімерних матеріалів та їхніх композитів, а також методи моделювання температурних залежностей їхніх механічних властивостей. Розглянуті методики дозволяють розв’язувати задачі механіки пружних тонких та товстих ізотропних та анізотропних оболонок, контактні задачі теорії пружних ортотропних оболонок, плоскі контактні задачі теорії в’язкопружності.Посилання
G. Lubin ed. Spravochnik po kompozitsionnym materialam [Handbook of composite materials]. Moscow, Mashinostroyeniye publ., 1988. 448 p.
Karpinos D. M. Composite materials. Directory [Kompozitsionnyye materialy. Spravochnik]. Kyyiv, Naukova dumka, 1985. 588 p.
Upadhyaya M. Studies on transition metal doped polyaniline and polyaniline-clay nanocomposites: an abstract … doctor of philosophy in chemistry. Gauhati University, 2013. 170 p.
Roeseler W. G., B. Sarh W. G. and Kismarton M. U. Composite structures: the first 100 years. Proceedings of the 16th International Conference on Composite Materials. Kyoto, 2007, pp. 1-10.
Method & Apparatus for Making Glass Wool: U.S. Patent US2133235 A / Slayter G, published 11.11.1933.
Owens Corning Company. Available at: https://www.owenscorning.com. (accessed 11.10.2017).
Keller M. E. The Graham Legacy: Graham-Paige to 1932. Turner Publishing Company, 1998. 232 p.
Palucka T. and Bensaude-Vincent B. Composites Overview. History of Recent Science and Technology. Available at: https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/composites/Composites_Overview.htm. (accessed 11.10.2017).
Pete Scala E. A Brief History of Composites in the U.S. The Dream and the Success. JOM. Springer, 1996, vol. 48, no. 2, pp. 45-48.
Dupont Company. Available at: http://www.dupont.com. (accessed 11.10.2017).
Ward D. GE Aviation. TUM 5th Anniversary Symposium, Institute for Carbon Composites. Available at: http://www.lcc.mw.tum.de/fileadmin/w00bkg/www/PDF/Symposium/LCC_Symposium_Ward.pdf. (accessed 11.10.2017).
Chortis D. I. Structural Analysis of Composite Wind Turbine Blades. Springer, 2013. 239 p.
Narisaeva I. I. Prochnost' polimernyh materialov [Strength of polymer materials]. Moskow, Himija Publ., 1987. 400 p.
Kravchuk A. S., Mayboroda V. P. and Urzhumtsev Yu. S. Mekhanika polimernykh i kompozitsionnykh materialov [Mechanics of polymer and composite materials]. Moscow, Nauka Publ., 1985. 304 p.
Kapitonov A. M and Redkin V. Ye. Fiziko-mekhanicheskiye svoystva kompozitsionnykh materialov. Uprugiye svoystva [Physico-mechanical properties of composite materials. Elastic properties]. Krasnoyarsk, Siberian Federal University Publ., 2013. 532 p.
Ward I. Mekhanicheskiye svoystva tvordykh polimerov [Mechanical properties of solid polymers]. Moscow, Himija Publ., 1975. 357 p.
Shen M. Vyazkouprugaya relaksatsiya v polimerakh [Viscoelastic relaxation in polymers]. Moscow, Mir Publ., 1974. 270 p.
Poberdrya B. Ye. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Moscow University Publ., 1984. 336 p.
Ferry J. D. Viscoelastic Properties of Polymers. John Wiley & Sons Publ., 1980. 641 p.
Zak G. and Haberer M. Mechanical properties of short-fibre layered composites: prediction and experiment. Rapid. Prototyp. J. 2000, vol. 6, pp. 107-118. doi:10.1108/13552540010323583.
Sun Z, Garboczi E. J. and Shah S. P. Modeling the elastic properties of concrete composites: Experiment, differential effective medium theory, and numerical simulation. Cem. Concr. Compos. 2007, vol. 29, pp. 22-38.
Gang P., Jiacheng F., Yuandong L., et al. Analysis and discussion on impact shear experiment technique of composite laminate. Proc. 2011 Int. Conf. Electron. Optoelectron. 2011, pp. 350-353. doi:10.1109/ICEOE.2011.6013378.
Durai Prabhakaran R. T., Andersen T. L., Bech J. I., et al. Investigation of mechanical properties of unidirectional steel fiber/polyester composites: Experiments and micromechanical predictions. H. Polym Compos. 2016, vol. 37, pp. 627-644. doi:10.1002/pc.23220.
Saleh M. N., Lubineau G., Potluri P., et al. Micro-mechanics based damage mechanics for 3D orthogonal woven composites: Experiment and numerical modelling. Compos. Struct. 2016, vol. 156, pp. 115-124. doi:10.1016/j.compstruct.2016.01.021.
Lv L., Huang Y., Cui J., et al. Bending properties of three-dimensional honeycomb sandwich structure composites: experiment and finite element method simulation. Text. Res. J. 2017, pp. 1-8. doi:10.1177/0040517517703602.
Movaghghar A and Lvov G. I. An Energy Model for Fatigue Life Prediction of Composite Materials Using Continuum Damage Mechanics. Appl. Mech. Mater. 2011, vol. 110–116. pp. 1353-1360. doi:10.4028/www.scientific.net/AMM.110-116.1353.
Seifert O. E., Schumacher S. C. and Hansen A. C. Viscoelastic properties of a glass fabric composite at elevated temperatures: experimental and numerical results. Compos. Part B. Eng. 2003, vol. 34, pp. 571-586. doi:10.1016/S1359-8368(03)00078-7.
Abot J., Yasmin A., Jacobsen A., et al. In-plane mechanical, thermal and viscoelastic properties of a satin fabric carbon/epoxy composite. Compos. Sci. Technol. 2004, vol. 64, pp. 263-268. doi:10.1016/S0266-3538(03)00279-3.
Chan A., Liu X. L. and Chiu W. K. Viscoelastic interlaminar shear modulus of fibre reinforced composites. Compos. Struct. 2006, vol. 75, pp. 185-191. doi:10.1016/j.compstruct.2006.04.058.
Guojun H. A theoretical and numerical study of crack propagation along a bimaterial interface with applications to IC packaging: a thesis … doctor of philosophy in engineering. National University of Singapore, 2006. 183 p.
Silva P., Valente T., Azenha M., et al. Viscoelastic response of an epoxy adhesive for construction since its early ages: Experiments and modelling. Compos. Part B Eng. 2017, vol. 116, pp. 266-277. doi:10.1016/j.compositesb.2016.10.047.
Ciambella J., Paolone A. and Vidoli S. A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber. Mech. Mater. 2010, vol. 42, pp. 932-944. doi:10.1016/j.mechmat.2010.07.007.
Stanier D. C., Patil A. J., Sriwong C., et al. The reinforcement effect of exfoliated graphene oxide nanoplatelets on the mechanical and viscoelastic properties of natural rubber. Compos. Sci. Technol. 2014, vol. 95, pp. 59-66. doi:10.1016/j.compscitech.2014.02.007.
Shrotriya P. and Sottos N. Viscoelastic response of woven composite substrates. Compos. Sci. Technol. 2005,.vol. 65, pp. 621-634. doi:10.1016/j.compscitech.2004.09.002.
Park S. J., Liechti K. M. and Roy S. Simplified Bulk Experiments and Hygrothermal Nonlinear Viscoelasticity. Mech. Time-Dependent Mater. 2004, vol. 8, pp. 303-344. doi:10.1007/s11043-004-0942-3.
Tzeng J. T., Emerson R. P. and O’Brien D. J. Viscoelasticity Analysis and Experimental Validation of Anisotropic Composite Overwrap Cylinders. Mech. Solids, Struct. Fluids, ASME. 2012, vol. 8, pp. 429. doi:10.1115/IMECE2012-87818.
Kohl J. G., Bierwisch N., Ngo T. T., et al. Determining the viscoelastic behavior of polyester fiberglass composite by continuous micro-indentation and friction properties. J. of Wear. 2016, vol. 350–351, pp. 63-67. doi:10.1016/j.wear.2016.01.005.
Ropers S., Kardos M. and Osswald T. A. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites. Compos. Part A Appl. Sci. Manuf. 2016, vol. 90, pp. 22-32. doi:10.1016/j.compositesa.2016.06.016.
Kwon S., Adachi T., Araki W., et al. Thermo-viscoelastic properties of silica particulate-reinforced epoxy composites: Considered in terms of the particle packing model. Acta Mater. 2006, vol. 54, pp. 3369-3374. doi:10.1016/j.actamat.2006.03.026.
Das R. Stress Relaxation Behavior of Carbon Fiber-Epoxy Prepreg Composites During and After Cure: a thesis … master of science in mechanical engineering. Bangladesh University of Engineering and Technology, 2012. 82 p.
Amadori S and Catania G. Robust identification of the mechanical properties of viscoelastic non-standard materials by means of frequency domain experimental measurements. Compos. Struct. 2016. doi:10.1016/j.compstruct.2016.11.029.
Feng J. and Guo Z. Temperature-frequency-dependent mechanical properties model of epoxy resin and its composites. Compos. Part B Eng. 2016, vol. 85, pp. 161-169. doi:10.1016/j.compositesb.2015.09.040.
Montazeri A. and Montazeri N. Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content. Mater. Des. 2011, vol. 32, pp. 2301-2307. doi:10.1016/j.matdes.2010.11.003.
Nairn J. A. Measurement of polymer viscoelastic response during an impact experiment. Polym. Eng. Sci. 1989, vol. 29, pp. 654-661. doi:10.1002/pen.760291007.
Kostopoulos V. and Korontzis D. T. A new method for the determination of viscoelastic properties of composite laminates: a mixed analytical–experimental approach. Compos. Sci. Technol. 2003, vol. 63, pp. 1441-1452. doi:10.1016/S0266-3538(03)00086-1.
Shivakumar E., Das C., Banik K., et al. Viscoelastic properties of in situ composite based on ethylene acrylic elastomer (AEM) and liquid crystalline polymer (LCP) blend. Compos. Sci. Technol. 2007, vol. 67, pp. 1202-1209. doi:10.1016/j.compscitech.2006.05.004.
Abouhamzeh M., Sinke J., Jansen K. M. B. et al. Kinetic and thermo-viscoelastic characterisation of the epoxy adhesive in GLARE. Compos. Struct. 2015, vol. 124, pp. 19-28. doi:10.1016/j.compstruct.2014.12.069.
Kumar N. and Singh S. P. Experimental study on vibration and damping of curved panel treated with constrained viscoelastic layer. Compos. Struct. 2010, vol. 92, pp. 233-243. doi:10.1016/j.compstruct.2009.07.011.
Hujare P. P. and Sahasrabudhe A. D. Experimental Investigation of Damping Performance of Viscoelastic Material Using Constrained Layer Damping Treatment. Procedia. Mater. Sci. 2014, vol. 5, pp. 726-733. doi:10.1016/j.mspro.2014.07.321.
Altenbach H. and Fedorov V. A. Structural elastic and creep models of a UD composite in longitudinal shear. Mech. Compos. Mater. 2007, vol. 43. pp. 289-298. doi:10.1007/s11029-007-0028-9.
Upadhyaya P. and Upadhyay C. S. A three-dimensional micromechanical model to predict the viscoelastic behavior of woven composites. Compos. Struct. 2011, vol. 93, pp. 2733-2739. doi:10.1016/j.compstruct.2011.05.031.
Levin V., Kanaun S. and Ronquillo J. G. Effective properties of viscoelastic media with crack-like inclusions. Int. J. Rock. Mech. Min. Sci. 2012, vol. 53, pp. 1-9. doi:10.1016/j.ijrmms.2012.03.007.
Hoang-Duc H. and Bonnet G. Effective properties of viscoelastic heterogeneous periodic media: An approximate solution accounting for the distribution of heterogeneities Mech. Mater. 2013, vol. 56, pp. 71-83. doi:10.1016/j.mechmat.2012.09.006.
Andrianov I. V., Danishevs’kyy V. V., Guillet A., et al. Effective properties and micro-mechanical response of filamentary composite wires under longitudinal shear. Eur. J. Mech. - A/Solids. 2005, vol. 24, pp. 195-206. doi:10.1016/j.euromechsol.2005.01.006.
Muddasani M., Sawant S. and Muliana A. Thermo-viscoelastic responses of multilayered polymer composites: Experimental and numerical studies. Compos. Struct. 2010, vol. 92, pp. 2641-2652. doi:10.1016/j.compstruct.2010.03.003.
Yang L., Wu Z., Cao Y., et al. Micromechanical modelling and simulation of unidirectional fibre-reinforced composite under shear loading. J. Reinf. Plast. Compos. 2015, vol. 34, pp. 72-83. doi:10.1177/0731684414562873.
Pathan M. V., Tagarielli V. L. and Patsias S. Numerical predictions of the anisotropic viscoelastic response of uni-directional fibre composites. Compos. Part A Appl. Sci. Manuf. 2017, vol. 93, pp. 18-32. doi:10.1016/j.compositesa.2016.10.029.
Jain D., Mukherjee A. and Kwatra N. Topological disorder of microstructure in fiber-reinforced polymer composites: Diffusion response. J. Reinf. Plast. Compos. 2015, vol. 34, pp. 49-59. doi:10.1177/0731684414562224.
Li H., Zhang B. and Bai G. Effects of constructing different unit cells on predicting composite viscoelastic properties. Compos. Struct. 2015, vol. 125, pp. 459-466. doi:10.1016/j.compstruct.2015.02.028.
Martynenko V. G. and Lvov G. I. Numerical prediction of temperature dependent anisotropic viscoelastic properties of fiber reinforced composite. J. Reinf. Plast. Compos. 2017, pp. 1-12. doi:10.1177/0731684417727064.
Wang G. and Pindera M. J. Locally-exact homogenization of viscoelastic unidirectional composites. Mech. Mat. 2016. vol. 103, pp. 95-109. doi:10.1016/j.mechmat.2016.09.009.
Shoneich M., Dinzart F., Sabar H., et al. A coated inclusion-based homogenization scheme for viscoelastic composites with interphases. Mech. Mat. 2016, pp. 1-36. doi:10.1016/j.mechmat.2016.11.009.
Chen Q., Wang G., Cheng X., et al. Finite-Volume Homogenization of Elastic/Viscoelastic Periodic Materials. Comp. Struct. 2017, pp. 1-38. doi: 10.1016/j.compstruct. 2017.09.044.
Covezzi F., de Miranda S., Marfia S., et al. Homogenization of elastic-viscoplastic composites by the Mixed TFA. Comput. Methods Appl. Mech. Engrg. 2017, pp. 1-36. doi:10.1016/j.cma.2017.02.009.
Adamov A. A. and Matveenko V. P. Metody prikladnoy vyazkouprugosti [Methods of applied viscoelasticity]. Ekaterinburg, UB RAS, 2003. 411 p.
Moskvitin V. V. Soprotivleniye vyazkouprugikh materialov primenitel'no k zaryadam raketnykh dvigateley na tvordom toplive [Resistance of viscoelastic materials with respect to charges of rocket engines on solid fuels], Moskow, Nauka Publ., 1972. 328 p.
Christensen R. M. Vvedeniye v teoriyu vyazkouprugosti [Introduction to the theory of viscoelasticity]. Moskow, Mir Publ., 1974. 338 p.
Kuznetsov G. B. Uprugost', vyazkouprugost' i dlitel'naya prochnost' tsilindricheskikh i sfericheskikh tel [Elasticity, viscoelasticity and long-term strength of cylindrical and spherical bodies]. Moskow, Nauka Publ., 1979. 112 p.
Makarova M. A., Gusev A. S., Pyshnogray G. V., et al. Nelineynaya teoriya vyazkouprugosti lineynykh polimerov [Nonlinear theory of viscoelasticity of linear polymers]. Elektronnyy fiziko-tekhnicheskiy zhurnal [Electronic Physical-Technical Journal]. 2007, vol. 2, pp. 1-54. Available at: http://eftj.secna.ru/vol2/070201.pdf. (accessed 11.10.2017).
Yudin V. Ye. and Leksovskiy A.M. Vyazkouprugost' polimernoy matritsy i razrusheniye teplostoykikh voloknistykh kompozitov [Viscoelasticity of a polymer matrix and destruction of heat-resistant fibrous composites]. Fizika tvordogo tela [Solid State Physics]. 2005, vol. 47, no. 5, pp. 944-950.
Galin L. A. Kontaktnyye zadachi teorii uprugosti i vyazkouprugosti [Contact problems of the theory of elasticity and viscoelasticity]. Moskow, Nauka Publ., 1980. 304 p.
Fabrizio M. Mathematical Problems in Linear Viscoelasticity. Society for Industrial Mathematics, 1992. 203 p.
Gutierrez-Lemini D. Engineering Viscoelasticity. New York, Springer Science+Business Media, 2014. 353 p.
Cho K. S. Viscoelasticity of Polymer. Theory and Numerical Algorithms. Dordrecht, Springer Science+Business Media, 2016. 612 p.
Shaw M. T. and MacKnight W. J. Introduction to Polymer Viscoelasticity. 3rd edition. Hoboken, John Wiley & Sons, 2005. 316 p.
Riande E., Diaz-Calleja R., Prolongo M., et al. Polymer Viscoelasticity: Stress and Strain in Practice. CRC Press, 1999. 904 p.
Roylance D. Engineering Viscoelasticity. Cambridge, Massachusetts Institute of Technology, 2001. 37 p. Available at: http://web.mit.edu/course/3/3.11/www/modules/visco.pdf. (accessed 11.10.2017)
Shinozuka M. Thermorheologically simple viscoelastic materials. AIAA J. 1965, vol. 3, pp. 375-377. doi:10.2514/3.2870.
Van Gurp M. and Palmen J. Time-temperature superposition for polymeric blends. J. Rheol. Bull. 1998, vol. 65, pp. 5-8.
Williams M. L., Landel R. F. and Ferry J. D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society. 1955, vol. 77, pp. 3701-3706. doi:10.1021/ja01619a008.
Tool A. Q. Relation between Inelastic Deformability and Thermal Expansion of Glass in its Annealing Range. Journal of the American Ceramic Society. 1946, vol. 29, no. 9, pp. 240-253. doi:10.1111/j.1151-2916.1946.tb11592.x.
Narayanaswamy O. S. A Model of Structural Relaxation in Glass. Journal of the American Ceramic Society. 1971, vol. 54, no. 10, pp. 491-498. doi:10.1111/j.1151-2916.1946.tb11592.x.
Arrhenius S. A. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 1889, vol. 4, pp. 96-116. doi:10.1515/zpch-1889-0108.
Fesko D. G. and Tschoegl N. W. Time-temperature superposition in thermorheologically complex materials. J. Polym. Sci. Part C Polym. Symp. 1971, vol. 35, pp. 51-69. doi:10.1002/polc.5070350106.
Bagley R. L. The thermorheologically complex material. Int. J. Eng. Sci. 1991, vol. 29, pp. 797-806.
Klompen E. T. J. and Govaert L. E. Nonlinear Viscoelastic Behaviour of Thermorheologically Complex Materials. Mech. Time-Dependent Mater. 1999, vol. 3, pp. 49-69. doi:10.1023/A:1009853024441.
Rosen S. L. Two-phase polymer systems. Polym. Eng. Sci. 1967, vol. 7, pp. 115-123. doi:10.1002/pen.760070210.
Imaoka S. Analyzing Viscoelastic Materials. ANSYS Advantage. 2008, vol. 2, no. 4, pp. 46-47.
Shu L. S. and Onat E. T. On anisotropic linear viscoelastic solids. Proc. Fourth Symp. Nav. Struct. Mech. 1967, pp. 203-215.
Taylor Z. A., Comas O., Cheng M., et al. On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution. Med. Image Anal. 2009, vol. 13, pp. 234-244. doi:10.1016/j.media.2008.10.001.
Nedjar B. An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 2007, vol. 196, pp. 1745-1756. doi:10.1016/j.cma.2006.09.009.
Lubarda V. and Asaro R. Viscoelastic response of anisotropic biological membranes. Part II: Constitutive models. Theor. Appl. Mech. 2014, vol. 41, pp. 213-231. doi:10.2298/TAM1403213L.
Santos J. E., Carcione J. E. M. and Picotti S. Viscoelastic-stiffness tensor of anisotropic media from oscillatory numerical experiments. Comput. Methods Appl. Mech. Eng. 2011. vol. 200, pp. 896-904. doi:10.1016/j.cma.2010.11.008.
Bretin E. and Wahab A. Some anisotropic viscoelastic Green functions. Contemp. Math. 2011, vol. 548, pp. 129-148.
Hwu C. and Chen Y. C. Analysis of defects in viscoelastic solids by a transformed boundary element method. Procedia. Eng. 2011, vol. 10, pp. 3038-3043. doi:10.1016/j.proeng.2011.04.503.
Bai T. and Tsvankin I. Time-domain finite-difference modeling for attenuative anisotropic media. Geophysics. 2016. vol. 81, pp. 163-176. doi:10.1190/geo2015-0424.1.
Poon H. and Ahmad M. F. A finite element constitutive update scheme for anisotropic, viscoelastic solids exhibiting non-linearity of the Schapery type. Int. J. Numer. Methods. Eng. 1999. vol. 46, pp. 2027–2041. doi:10.1002/(SICI)1097-0207(19991230)46:12<2027::AID-NME575>3.0.CO;2-5.
Gerngross T. and Pellegrino S. Modelling of Anisotropic Viscoelastic Behaviour in Super-Pressure Balloons. 48th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. 2007, pp. 1-15. doi:10.2514/6.2007-1808.
Rand J. L., Grant D. and Strganac T. The nonlinear biaxial characterization of balloon film. 34th Aerosp. Sci. Meet. Exhib., Reston, 1996. doi:10.2514/6.1996-574.
Rand J. L. and Sterling W. J. A constitutive equation for stratospheric balloon materials. Adv. Sp. Res. 2006, vol. 37, pp. 2087-2091. doi:10.1016/j.asr.2005.03.046.
Staub S., Andrä H., Kabel M., et al. Multi-scale simulation of viscoelastic fiber-reinforced composites. Tech. Mech. 2012, vol. 32, pp. 70-83.
Cavallini F. and Seriani G. Symbolic computations in viscoelasticity and anisotropic elasticity. 8th Int. Math. Symp., 2006.
Liefeith D. and Kolling S. An anisotropic material model for finite rubber viscoelasticity. LS-DYNA Adwenderforum, Frankenthal, 2007, pp. 25-54.
Martynenko V. G. An Original Technique for Modeling of Anisotropic Viscoelasticity of Orthotropic Materials in Finite Element Codes Applied to the Mechanics of Plates and Shells. Mechanics and Mechanical Engineering. 2017, vol. 21, pp. 389–413.
Lvov G. I. and Martynenko V. G. Contact problem of anisotropic viscoelasticity of two cylindrical shells. Innov. Solut. Repair Gas Oil Pipelines. 2016, pp. 159-171.
Lvov G.I. and Martynenko V. G. Development of an analytical model of a repair bandage of a pipeline. Безразрушителен контрол в съвременната индустрия, Sofia, 2015, vol. 164, pp. 128-133.
Tymoshenko S. P. and Voinovsky-Krieger S. Plastiny i obolochki [Plates and Shells]. Moskow, Nauka Publ., 1966. 636 p.
Novozhilov V. V. Teoriya tonkikh obolochek [The theory of thin shells]. St. Petersburg, St. Petersburg University publ., 2010. 380 p.
Kolkunov N. V. Osnovy raschota uprugikh obolochek [Osnovy raschota uprugikh obolochek]. Moscow, Vysshaya Shkola Publ., 1972. 296 p.
Grigorenko Ya. M. and Molchenko L. V. Osnovy teoriyi plastyn i obolonok [Fundamentals of the theory of plates and shells]. Kyiv, Lybid Publ., 1993. 232 p.
Novozhilov V. V., Chernykh K. F. and Mikhaylovskiy Ye. I. Lineynaya teoriya tonkikh obolochek [Linear theory of thin shells]. Leningrad, Polytechnic Publ., 1991. 656 p.
Goldenweiser A. L. Teoriya uprugikh tonkikh obolochek [The theory of elastic thin shells]. Moscow, Nauka Publ., 1976. 512 p.
Avdonin A. S. Prikladnyye metody raschota obolochek i tonkostennykh konstruktsiy [Applied methods for the calculation of shells and thin-walled structures]. Moscow, Mashinostroyeniye Publ., 1969. 402 p.
Wempner G. and Talaslidis D. Mechanics of Solids and Shells: Theories and Approximations. CRC Press, 2003. 521 p.
Axelrad E. L. Theory of Flexible Shells. Amsterdam, Elsevier Science Publ., 1987. 399 p.
Voyiadjis G. Z. and Karamanlidis D. Advances in the Theory of Plates and Shells. Amsterdam, Elsevier Science Publ., 1990. 313 p.
Durban D., Givoli D. and Simmonds J. G. Advances in the Mechanics of Plates and Shells. New York, Kluwer Academic Publ., 2002. 356 p.
Kienzler R., Altenbach H. and Ott I. Theories of Plates and Shells. Critical Review and New Application. Bremem, Universitat Bremen, 2002. 238 p.
Zienkiewicz O. Metod konechnykh elementov v tekhnike [The finite element method in engineering science]. Moscow, Mir Publ., 1975. 541 p.
Obraztsov I. F., Saveliev L. M. and Khazanov H. S. Metod konechnykh elementov v zadachakh stroitel'noy mekhaniki letatel'nykh apparatov [The finite element method in the problems of structural mechanics of aircrafts. Moscow, Vysshaya Shkola Publ., 1985. 392 p.
Golovanov A. I. and Kornishin M. S. Vvedeniye v metod konechnykh elementov statiki tonkikh obolochek [Introduction to the finite element method of static thin shells]. Kazan, Kazan Physico-Technical University Publ., 1989. 269 p.
Rickards R. B. Metod konechnykh elementov v teorii obolochek i plastin [The finite element method in the theory of shells and plates]. Riga, Zinatne Publ., 1988. 284 p.
Chapelle D. and Bathe K. J. The Finite Element Analysis of Shells - Fundamentals. Berlin, Springer, 2011. 410 p.
Krätzig W. B. and Oñate E. Computational Mechanics of Nonlinear Response of Shells. Berlin, Springer, 1990. 405 p.
Solomonov Yu. S., Georgiyevskiy V. P., Nedbay A. Ya., et al. Metody raschota tsilindricheskikh obolochek iz kompozitsionnykh materialov [Methods for calculating cylindrical shells of composite materials]. Moscow, Fizmatlit Publ., 2009. 264 p.
Elpatievsky A. N. and Vasiliev V. V. Prochnost' tsilindricheskikh obolochek iz armirovannykh materialov [Strength of cylindrical shells of reinforced materials]. Moscow, Mashinostroyeniye Publ., 1972. 168 p.
Bazhanov V. L., Goldenblat I. I., Kopnov V. V., et al. Plastinki i obolochki iz stekloplastikov [Plates and shells of fiberglass]. Moscow, Vysshaya Shkola Publ., 1970. 408 p.
Vinson J. R. The Behavior of Shells Composed of Isotropic and Composite Materials. Amsterdam, Springer Science+Business Media, 1993. 545 p.
Reddy J. N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, 2004. 831 p.
Grigolyuk E. I. and Tolkachev V. M. Kontaktnyye zadachi teorii plastin i obolochek [Contact problems of the theory of plates and shells]. Moscow, Mashinostroyeniye Publ., 1980. 411 p.
Kantor B. Ya. Kontaktnyye zadachi nelineynoy teorii obolochek vrashcheniya [Contact problems of the nonlinear theory of shells of revolution]. Kyiv, Naukova Dumka Publ., 1990. 136 p.
Zehil G. P. Modeling of Nonlinear Viscoelastic Solids with Damage Induced Anisotropy, Dissipative Rolling Contact Mechanics, and Synergic Structural Composites: an abstract … doctor of philosophy in engineering. Graduate School of Duke University, 2013. 349 p.
Burlakov A. V., Lvov G. I. and Morachkovskiy O. K. Polzuchest' tonkikh obolochek [Creep of thin shells]. Kharkiv, Vyshcha shkola, 1977. 124 p.
Sirotkin O. S., Lvov G. I. and Boholyubov B. S. Nelineynyye kontaktnyye zadachi dlya tonkostennykh elementov konstruktsiy v mashinostroyenii [Nonlinear contact problems for thin-walled structural elements in mechanical engineering]. Moscow, Doby and Co Publ., 2008. 312 p.
Carrera E. Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells. Comp. Meth. Eng. 2002. vol. 9, no. 2, pp. 87-140. doi:10.1007/BF02736649
Cho Ch., Zhao G. and Kim Ch. B. Nonlinear Finite Element Analysis of Composite Shell under Impact. KSME International Journal. 2000, vol. 14, no. 6, pp. 666-674.
Gal E. and Levy R. Geometrically Nonlinear Analysis of Shell Structures Using a Flat Triangular Shell Finite Element. Computational Methods in Engineering. 2006, vol. 13, no. 3, pp. 331-388. doi:10.1007/BF02736397.
Moreira R. A. S., Sousa R. J. A. and Valente R. A. F. A Solid-Shell Finite Element for Non-Linear Geometric and Material Analysis. Composite Structures. 2010, vol. 92, pp. 1517-1523. doi:10.1016/j.compstruct.2009.10.032.
Araujo A. L., Soares S. M. M. and Soares C. A. M. A Viscoelastic Sandwich Finite Element Model for the Analysis of Passive, Active and Hybrid Structures. Applied Composite Materials. 2010, vol. 17, pp. 529-542. doi:10.1007/s10443-010-9141-3.
Pinsky P. M. and Kim K. O. A Multi-Director Formulation for Nonlinear Elastic-Viscoelastic Layered Shells. Computers and Structures. 1986, vol. 24, no. 6, pp. 901-913. doi:10.1016/0045-7949(86)90298-1.
Johnson A. R. A Viscoelastic Hybrid Shell Finite Element. The Mathematics of Finite Elements and Applications. 2000, vol. 10, pp. 87-96.
Padovan J. Finite Element Analysis of Steady and Transiently Moving/Rolling Nonlinear Viscoelastic Structure - I. Theory. Computers and Structures. 1987. vol. 27, no. 2, pp. 249-257. doi:10.1016/0045-7949(87)90093-9.
Kennedy R. and Padovan J. Finite Element Analysis of Steady and Transiently Moving/Rolling Nonlinear Viscoelastic Structure - II. Shell and Three-Dimensional Simulations. Computers and Structures. 1987, vol. 27, no. 2, pp. 259-273. doi:10.1016/0045-7949(87)90094-0.
Nakajima Y. and Padovan J. Finite Element Analysis of Steady and Transiently Moving/Rolling Nonlinear Viscoelastic Structure - III. Impact/Contact Simulations. Computers and Structures. 1987, vol. 27, no. 2, pp. 275-286. doi:10.1016/0045-7949(87)90095-2.
Huh H. and Kwak Y. K. Finite Element Stress Analysis of the Reinforced Tire Contact Problem. Computers and Structures. 1990, vol. 36, no. 5, pp. 871-881. doi:10.1016/0045-7949(90)90158-X.
Gotoh J., Yu Q., Shiratori M., et al. Experimental/Numerical Analyses of a Viscoelastic Body under Rolling Contact. Mechanics of Time-Dependent Materials. 1999, vol. 3, pp. 245-261. doi:10.1023/A:1009838504011.
Gotoh J., Shiratori M., Yoneyama S., et al. Viscoelastic Stress Analysis of a Strip Plate under Moving Contact with Dry Friction. Mechanics of Time-Dependent Materials. 2000, vol. 4, pp. 43-56. doi:10.1023/A:1009879628439.
Liu J. and Sharan Sh. K. Analysis of Dynamic Contact of Cracks in Viscoelastic Media. Computer Methods in Applied Mechanics and Engineering. 1995, vol. 121, pp. 187-200. doi:10.1016/0045-7825(94)00702-O.
Mahmoud F. F., El-Shafei A. G. and Attia M. A. Analysis of Thermoviscoelastic Frictionless Contact of Layered Bodies. Finite Elements in Analysis and Design. 2011, vol. 47, pp. 307-318. doi:10.1016/j.finel.2010.10.004.