Математичне та розрахункове моделювання розповсюдження електромагнітного поля та магніто-пружно-пластичного деформування технологічних систем. Огляд
DOI:
https://doi.org/10.20998/2078-9130.2025.1.330041Ключові слова:
математичне моделювання, розрахунковий аналіз, електромагнітне поле, електромагнітна обробка, електро-магніто-пружність, метод скінченних елементів.Анотація
У статті розглянуто стан проблеми стосовно математичного та розрахункового моделювання процесів розповсюдження електромагнітного поля та викликаного їм деформування технологічних систем. Електромагнітне поле є невід’ємним чинником функціонування різноманітних технічних і технологічних систем. Дія електромагнітного поля на тіла та середовища відрізняється в залежності від їх властивостей. У разі дії на електропровідні тіла і середовища основну роль відіграє силовий вплив (завдяки виникаючим електромагнітним силам) та вплив на зміну температури (завдяки виникаючим розповсюдженими джерелам тепловиділення згідно до закону Джоуля-Ленца). Силовий вплив електромагнітного поля використовується у величезній кількості технологічних процесів. Можна відзначити процеси геологічної розвідки (завдяки імпульсам електромагнітного поля), металургійні процеси (тут електромагнітне поле застосовується, наприклад, для перемішування розплавів), обробні процеси. Великий клас обробних технологічних операцій, який має загальну назву електромагнітна обробка матеріалів, використовує електромагнітні сили для незворотної формозміни заготовок завдяки виникненню зон пластичних деформацій. У даному випадку силовій дії піддається як заготовка так і джерело електромагнітного поля – індуктор (соленоїд). При розробці технологічних операцій магнітно-імпульсної обробки вельми необхідно забезпечити як потрібний ступінь деформування заготовки так і працездатність індуктора, яка визначається його міцністю. Ці потреби викликають необхідність проведення математичного та розрахункового моделювання, що дозволяє визначити раціональні кількісні значення конструкційних та експлуатаційних параметрів. Подібне моделювання повинно гуртуватись на відповідних теоретичних моделях стосовно розповсюдження електромагнітного поля та викликаного ним пружно-пластичного деформування. У випадку розгляду технологічних систем електромагнітної обробки для опису розповсюдження електромагнітного поля припустимим є використання макроскопічного підходу, а опис процесів деформування може базуватись на принципах теорії електро-магніто-пружності. Сучасний підхід до математичного моделювання та розрахункового аналізу у системах електромагнітної обробки потребує використання чисельних методів, найбільш вживаним з яких є метод скінченних елементів завдяки своїй універсальності. Метод скінченних елементах у даному випадку дозволяє моделювати практично реальну геометрію системи та враховувати більшість конструкційних та експлуатаційних особливостей, пов’язаних із властивостями матеріалів, умовами контактної взаємодії тощо.Посилання
Erber, Thomas. "High-energy electromagnetic conversion processes in intense magnetic fields." Reviews of Modern Physics 38.4 (1966): 626. https://doi.org/10.1103/RevModPhys.38.626
Xiong, Han, et al. "Design and analysis of an electromagnetic energy conversion device." Sensors and Actuators A: Physical 366 (2024): 114972. https://doi.org/10.1016/j.sna.2023.114972
Razek, Adel. "Coupled models in electromagnetic and energy conversion systems from smart theories paradigm to that of complex events: A review." Applied Sciences 12.9 (2022): 4675. https://doi.org/10.3390/app12094675
Yoshikawa, K., T. Noma, and Y. Yamamoto. "Direct-energy conversion from high-energy ions through interaction with electromagnetic fields." Fusion Technology 19.3P2A (1991): 870-875. https://doi.org/10.13182/FST91-A29454
Joshi, Narahari V. "Energy conversion from the vacuum field to electromagnetic fields." Physics Essays 26.1 (2013). https://doi.org/10.4006/0836-1398-26.1.61
Song, Mingzhao, et al. "Wireless power transfer based on novel physical concepts." Nature Electronics 4.10 (2021): 707-716. https://doi.org/10.1038/s41928-021-00658-x
Xue, Guoqiang, et al. "A review of electrical and electromagnetic methods for coal mine exploration in China." Ieee Access 7 (2019): 177332-177341. https://doi.org/10.1109/ACCESS.2019.2951774
Börner, Jana H., Matthias Bär, and Klaus Spitzer. "Electromagnetic methods for exploration and monitoring of enhanced geothermal systems–a virtual experiment." Geothermics 55 (2015): 78-87. https://doi.org/10.1016/j.geothermics.2015.01.011
Buddo, Igor, et al. "Electromagnetic surveys for petroleum exploration: challenges and prospects." Energies 15.24 (2022): 9646. https://doi.org/10.3390/en15249646
Logie, H. J. "Zeta: A source of thermo-nuclear power." South African Journal of Science 54.11 (1958): 281-287. Available at: https://journals.co.za/doi/pdf/10.10520/AJA00382353_585
Winterberg, F. "Initiation of thermonuclear reactions by high-current electron beams." Nuclear Fusion 12.3 (1972): 353.. https://doi.org/10.1088/0029-5515/12/3/010
Brebbia, Carlos A., ed. Electromagnetic Applications. Vol. 6. Springer Science & Business Media, 2012. Available at: https://books.google.com.ua/books?hl=ru&lr=&id=2LTtCAAAQBAJ&oi=fnd&pg=PA1&dq=Electromagnetic+Applications&ots=swChUafDA1&sig=vsIUYSlNrkyLRUjkoWT0nLKf1vk&redir_esc=y#v=onepage&q=Electromagnetic%20Applications&f=false
Trimarco, Carmine. "Material electromagnetic fields and material forces." Archive of Applied Mechanics 77 (2007): 177-184. https://doi.org/10.1007/s00419-006-0056-2
Olszewski, Stanisław. "Electrodynamics of the Joule-Lenz Law Applied to the Energy Emission Done by a Free Electron or Harmonically-Oscillating Microparticle." Journal of Quantum Information Science 8.3 (2018): 121-130. https://doi.org/10.4236/jqis.2018.83008
Rudnev, Valery, Don Loveless, and Raymond L. Cook. Handbook of induction heating. CRC press, 2017. https://doi.org/10.1201/9781315117485
Lucia, Oscar, et al. "Induction heating technology and its applications: past developments, current technology, and future challenges." IEEE Transactions on industrial electronics 61.5 (2013): 2509-2520. https://doi.org/10.1109/TIE.2013.2281162
García, Álvaro, et al. "A simple model to define induction heating in asphalt mastic." Construction and Building Materials 31 (2012): 38-46. https://doi.org/10.1016/j.conbuildmat.2011.12.046
Sadeghipour, K., J. A. Dopkin, and K. Li. "A computer aided finite element/experimental analysis of induction heating process of steel." Computers in industry 28.3 (1996): 195-205. https://doi.org/10.1016/0166-3615(95)00072-0
Mariani, Alberto, and Giulio Malucelli. "Insights into induction heating processes for polymeric materials: An overview of the mechanisms and current applications." Energies 16.11 (2023): 4535. https://doi.org/10.3390/en16114535
Bay, François, et al. "A numerical model for induction heating processes coupling electromagnetism and thermomechanics." International journal for numerical methods in engineering 58.6 (2003): 839-867. https://doi.org/10.1002/nme.796
Ren, Zhongming, et al. "New study and development on electromagnetic field technology in metallurgical processes." Acta Metall Sin 56.4 (2020): 583-600. https://doi.org/10.11900/0412.1961.2019.00373
Li, Jiale, et al. "Application of electromagnetic metallurgy in continuous casting: A review." Progress in Natural Science: Materials International 34.1 (2024): 1-11. https://doi.org/10.1016/j.pnsc.2024.01.016
Gerbeth, Gunter, Kerstin Eckert, and Stefan Odenbach. "Electromagnetic flow control in metallurgy, crystal growth and electrochemistry." The European Physical Journal Special Topics220 (2013): 1-8. https://doi.org/10.1140/epjst/e2013-01792-4
Herlach, Fritz. Strong and ultrastrong magnetic fields and their applications. Vol. 57. 1985. https://doi.org/10.1007/3-540-13504-9
Schweitzer, Gerhard. "Introduction and survey." Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. 1-26.
Bleuler, Hannes, et al. Magnetic bearings: theory, design, and application to rotating machinery. Springer Science & Business Media, 2009. Available at: https://books.google.com.ua/books?hl=ru&lr=&id=1Kyg5dWyBasC&oi=fnd&pg=PR5&dq=Magnetic+bearings:+theory,+design,+and+applica-tion+to+rotating+machinery&ots=0fzGtDNHfv&sig=dc1_RYcMjdwAyLYzXCQAlXEajSw&redir_esc=y#v=onepage&q=Magnetic%20bearings%3A%20theory%2C%20design%2C%20and%20application%20to%20rotating%20machinery&f=false
Beliy, I., S. Fertik, and L. Chimenko. "Reference book on magnetic-pulsed stamping." Charkov, USSR (1976).
Livshiz, Yuri, and Oren Gafri. "Technology and equipment for industrial use of pulse magnetic fields." Digest of Technical Papers. 12th IEEE International Pulsed Power Conference.(Cat. No. 99CH36358). Vol. 1. IEEE, 1999. https://doi.org/10.1109/PPC.1999.825514
Psyk, Verena, et al. "Electromagnetic forming—a review." Journal of Materials Processing Technology 211.5 (2011): 787-829. https://doi.org/10.1016/j.jmatprotec.2010.12.012
El-Azab, Anter, Mark Garnich, and Ashish Kapoor. "Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs." Journal of Materials Processing Technology 142.3 (2003): 744-754. https://doi.org/10.1016/S0924-0136(03)00615-0.
Mamalis and, A. G., et al. "Electromagnetic forming and powder processing: trends and developments." Appl. Mech. Rev. 57.4 (2004): 299-324. https://doi.org/10.1115/1.1760766
Elsayed, Awab, and Mohammed Elamin. "Review of the Innovative Design of Coils for Electromagnetic Forming Process." Int. J. Res. Eng. Sci. Manag 3 (2020): 36-39. Available at: https://www.researchgate.net/profile/Mohammed-Elamin-3/publication/345681562_Review_of_the_Innovative_Design_of_Coils_for_Electromagnetic_Forming_Process/links/5faaa4ba92851cd8c632f9c3/Review-of-the-Innovative-Design-of-Coils-for-Electromagnetic-Forming-Process.pdf
Du, Zhihao, et al. "Investigation of electromagnetic incremental forming of single-curvature thin-walled aluminum alloy skins." The International Journal of Advanced Manufacturing Technology 121.5 (2022): 3323-3335. https://doi.org/10.1007/s00170-022-09490-9
Feng, Fei, et al. "Multi-point die electromagnetic incremental forming for large-sized sheet metals." Journal of Manufacturing Processes 62 (2021): 458-470. https://doi.org/10.1016/j.jmapro.2020.12.022
Du, Zhihao, et al. "Springback control and large skin manufacturing by high-speed vibration using electromagnetic forming." Journal of Materials Processing Technology 299 (2022): 117340. https://doi.org/10.1016/j.jmatprotec.2021.117340
Zhu, Chengxi, et al. "Hybrid forming process combining electromagnetic and quasi-static forming of ultra-thin titanium sheets: formability and mechanism." International journal of machine tools and manufacture 180 (2022): 103929. https://doi.org/10.1016/j.ijmachtools.2022.103929
Haratmeh, Hossein Ebrahimi, Alireza Fallahi Arezoodar, and Mohmoud Farzin. "Numerical and experimental investigation of inward tube electromagnetic forming." The International Journal of Advanced Manufacturing Technology 88 (2017): 1175-1185. https://doi.org/10.1007/s00170-016-8826-7
Batygin, Yuri V., Sergey F. Golovashchenko, and Andrey V. Gnatov. "Pulsed electromagnetic attraction of sheet metals–fundamentals and perspective applications." Journal of Materials Processing Technology 213.3 (2013): 444-452. https://doi.org/10.1016/j.jmatprotec.2012.10.003
Batygin, Yuri V., Sergey F. Golovashchenko, and Andrey V. Gnatov "Pulsed electromagnetic attraction of nonmagnetic sheet metals." Journal of Materials Processing Technology 214.2 (2014): 390-401. https://doi.org/10.1016/j.jmatprotec.2013.09.018
Batygin, Yu. V., et al. "Analytical relations for fields and currents in magnetic-pulsed «expansion» of tubular conductors of small diameter." Electrical Engineering & Electromechanics 6 (2024): 67-71. https://doi.org/10.20998/2074-272X.2024.6.09
Batygin, Yu. V., et al. "The main inventions for technologies of the magnetic-pulsed attraction of the sheet metals. A brief review." Electrical Engineering & Electromechanics 3 (2018): 43-52. https://doi.org/10.20998/2074-272X.2018.3.06
Batygin, Yu. V., et al. "The mutual influence of exciting and induced currents in the circular solenoid–massive conductor system." Electrical Engineering & Electromechanics 6 (2023): 67-71 https://doi.org/10.20998/2074-272X.2023.6.12
Batygin, Yuriy Victor. "Experimental test of the tool for the external EMF removing dents on a car body." Int. J. Energy Power Eng 3.4 (2014): 204-208. https://doi.org/10.11648/j.ijepe.20140304.14
Batygin, Yu. V., et al. "Numerical estimates of currents and forces in linear tools of the magnetic-pulse attraction of metals. Part 2: high electrical conductance metals." Electrical Engineering & Electromechanics 6 (2019): 39-43. https://doi.org/10.20998/2074-272X.2019.6.05
Batygin, Yu. V., E. A. Chaplygin, and S. A. Shinderuk. "An analysis of the electromagnetic processes in the inductor system--tool of the straightening of car bodies." Electrical Engineering & Electromechanics 2 (2015): 53-56. https://doi.org/10.20998/2074-272X.2015.2.10
Maxwell, James Clerk. A treatise on electricity and magnetism. Vol. 1. Clarendon press, 1873. Available at: https://books.google.com.ua/books?hl=ru&lr=&id=92QSAAAAIAAJ&oi=fnd&pg=PR5&dq=A+treatise+on+electricity+and+magnetism&ots=SpVNdqkLb_&sig=fK4Q5SJtNTGS90lkmQ4EfazzCtM&redir_esc=y#v=onepage&q=A%20treatise%20on%20electricity%20and%20magnetism&f=false
Nefyodov, Eugene I., et al. "Boundary conditions, integral and complex forms of electrodynamics equations, classification of electromagnetic phenomena." Electromagnetic Fields and Waves: Microwave and mmWave Engineering with Generalized Macroscopic Electrodynamics (2019): 29-48. https://doi.org/10.1007/978-3-319-90847-2_2
Stam, Mike, and Greg Carman. "Electrothermoelastic behavior of piezoelectric coupled cylinders." AIAA journal 34.8 (1996): 1612-1618. https://doi.org/10.2514/3.13279
Pidstryhach, Ya S., et al. "Thermoelasticity of Electrically Conducting Bodies." (1977).
Krawczyk, Andrzej, and John A. Tegopoulos. Numerical modelling of eddy currents. Oxford University Press, 1993. https://doi.org/10.1093/oso/9780198593829.001.0001
Maugin, Gérard A. Continuum mechanics of electromagnetic solids. Elsevier, 2013. Available at: https://books.google.com.ua/books?hl=ru&lr=&id=bgQhBQAAQBAJ&oi=fnd&pg=PP1&dq=Continuum+mechanics+of+electromagnetic+solids&ots=ZE2Fp27yhs&sig=k2kTcgOayb5_JoG87A07cI3j5U0&redir_esc=y#v=onepage&q=Continuum%20mechanics%20of%20electromagnetic%20solids&f=false
Moon, Francis C., and S. Chattopadhyay. "Magneto-solid mechanics." Journal of Applied Mechanics 53.2 (1986): 478. https://ui.adsabs.harvard.edu/link_gateway/1986JAM....53..478M/doi:10.1115/1.3171795
Toupin, R. A. The elastic dielectric. Journal of Rational Mechanics and Analysis 5.6 (1956): 849–915. Available at: http://www.jstor.org/stable/24900192
Toupin, RA153286. "A dynamical theory of elastic dielectrics." International Journal of Engineering Science 1.1 (1963): 101-126. https://doi.org/10.1016/0020-7225(63)90027-2
Maugin, G. A. "Deformable dielectrics I. Field equations for a dielectric made of several molecular species." Arch. Mech.(Poland) 28 (1976): 676-682. Available at: https://rcin.org.pl/Content/123596/PDF/WA727_92210_P.262b-Maugin-Deformable.pdf
Knopoff, L. "The interaction between elastic wave motions and a magnetic field in electrical conductors." Journal of Geophysical Research 60.4 (1955): 441-456. https://doi.org/10.1029/JZ060i004p00441
Chadwick, P. "Elastic wave propagation in a magnetic field." Proceedings of the 9th international congress of applied mechanics. Vol. 7. 1957.
Kaliski, S., and J. Petykiewicz. "Dynamical equations of motion coupled with the field of temperatures and resolving functions for elastic and inelastic anisotropic bodies in the magnetic field." Proc. Vibr. Probl. Vol. 1. No. 3. 1960.
Dunkin, J. W., and Eringen A. C. "On the propagation of waves in an electromagnetic elastic solid." International Journal of Engineering Science 1.4 (1963): 461-495. https://doi.org/10.1016/0020-7225(63)90004-1
Truesdell, Clifford, and Richard Toupin. The classical field theories. Springer Berlin Heidelberg, 1960. https://doi.org/10.1007/978-3-642-45943-6_2
Keyes, Robert W. "The effects of elastic deformation on the electrical conductivity of semiconductors." Solid state physics. Vol. 11. Academic Press, 1960. 149-221. https://doi.org/10.1016/S0081-1947(08)60168-X
Michel, B. "Eringen, A. C., Mechanics of Continua. Huntington, New York, Robert E. Krieger Publ. Co. 1980. https://doi.org/10.1002/zamm.19840640315
Freund, L. B. "The mechanics of electronic materials." International Journal of Solids and Structures 37.1-2 (2000): 185-196. https://doi.org/10.1016/S0020-7683(99)00087-6
Maugin, G. A. "Electromagnetic internal variables in electromagnetic continua." Archives of Mechanics 33.6 (1981): 927-935.
Eringen, A. Cemal, and Gérard A. Maugin. Electrodynamics of continua I: foundations and solid media. Springer Science & Business Media, 2012. Available at: https://books.google.com.ua/books?id=JfzUBwAAQBAJ
Hutter, Kolumban, and Alphons A. F. Van de Ven. "Field matter interactions in thermoelastic solids." (1978). Available at: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7930128221
Grot, Richard A., and A. Cemal Eringen. "Relativistic continuum mechanics part I—mechanics and thermodynamics." International Journal of Engineering Science 4.6 (1966): 611-638. https://doi.org/10.1016/0020-7225(66)90008-5
Rohit, Gaurang R., Jagdish M. Prajapati, and Vikram B. Patel "Coupling of finite element and meshfree method for structure mechanics application: A review." International Journal of Computational Methods 17.04 (2020): 1850151. https://doi.org/10.1142/S0219876218501517
Moon, Parry Hiram, and Domina Eberle Spencer. Foundations of electrodynamics. Courier Corporation, 2013. Available at: https://books.google.com.ua/books?hl=ru&lr=&id=9dz7AAAAQBAJ&oi=fnd&pg=PP1&dq=Foundations+of+electrodynamics&ots=2uek1GaxIx&sig=hpcDOZFsVovcUyxiux93hrypDg8&redir_esc=y#v=onepage&q=Foundations%20of%20electrodynamics&f=false
Chu, Lan Jen, Hermann A. Haus, and P. Penfield. "The force density in polarizable and magnetizable fluids." Proceedings of the IEEE 54.7 (1966): 920-935. https://doi.org/10.1109/PROC.1966.4938
Pao, Y.-H. "Electromagnetic forces in deformable continua." In: Mechanics today. Volume 4.(A78-35706 14-70) New York 4 (1978): 209-305.
Penfield Jr, Paul L., L. J. Chu, and Hermann A. Haus. Electrodynamics of moving media. Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT), 1963. Available at: https://dspace.mit.edu/bitstream/handle/1721.1/53884/RLE_QPR_070_X.pdf?
Moon, Francis C., and Yih-Hsing Pao. "Magnetoelastic buckling of a thin plate." (1968): 53-58. https://doi.org/10.1115/1.3601173
Van De Ven, A. A. F. "Magnetoelastic buckling of thin plates in a uniform transverse magnetic field." Journal of Elasticity 8.3 (1978): 297-312. https://doi.org/10.1007/BF00130468
Popelar, C. H. "Postbuckling analysis of a magnetoelastic beam." (1972): 207-211. https://doi.org/10.1115/1.3422614
Wallerstein, David Vandermere, and Milton Oliver Peach. "Magnetoelastic buckling of beams and thin plates of magnetically soft material." (1972): 451-455. https://doi.org/10.1115/1.3422699
Alblas, J. B. "Electro-magneto-elasticity." Topics in Applied Continuum Mechanics: Symposium Vienna, March 1–2, 1974. Vienna: Springer Vienna, 1974. https://doi.org/10.1007/978-3-7091-4188-5_5
Podstrigach, Ya. S., Ya I. Burak, and V. F. Kondrat. "Magnetothermoelasticity of Electrically Conducting Bodies." (1982).
Moon, Francis C. "Problems in magneto-solid mechanics." In: Mechanics today. Volume 4.(A78-35706 14-70) New York 4 (1978): 307-390. Available at: https://1978meto....4..307M
Hrytsyna, Olha, Yuriy Tokovyy, and Maryan Hrytsyna. "Local gradient theory of dielectrics incorporating polarization inertia and flexodynamic effect." Continuum Mechanics and Thermodynamics35.6 (2023): 2125-2144. https://doi.org/10.1007/s00161-023-01229-5
Hrytsyna, Olha, and Vasyl Kondrat. Local gradient theory for dielectrics: fundamentals and applications. Jenny Stanford Publishing, 2019. https://doi.org/10.1201/9781003006862
Burak, Ya. I., V. F. Kondrat, and O. R. Hrytsyna. "Subsurface mechanoelectromagnetic phenomena in thermoelastic polarized bodies in the case of local displacements of mass." Materials Science 43 (2007): 449-463. https://doi.org/10.1007/s11003-007-0054-8
Kondrat, V. F., and O. R. Hrytsyna. "Mechanoelectromagnetic interaction in isotropic dielectrics with regard for the local displacement of mass." Journal of Mathematical Sciences 168 (2010): 688-698. https://doi.org/10.1007/s10958-010-0019-6
Hrytsyna, Olha, Yuriy Tokovyy, and Maryan Hrytsyna. "Non-classical theory of electro-thermo-elasticity incorporating local mass displacement and nonlocal heat conduction." Mathematics and Mechanics of Solids 29.3 (2024): 539-559. https://doi.org/10.1177/10812865231201132
Musij, R., Kh. Drohomyretska, and O. Oryshchyn. "Solutions of coupled problem of thermomechanics for electroconductive hollow cylinder under non-stationary electromagnetic actions." Mathematical modeling and computing 4, Num. 1 (2017): 69-77. Available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=mmc_2017_4_1_10
Musiy, Roman. "Thermostressed Condition and Load-carrying Capacity of Non-ferromagnetic Electric Plates under the Action of Electromagnetic Pulses." Computational problems of electrical engineering 2,№ 2 (2012): 69-78. Available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=CPoee_2012_2_2_14
Hachkevych, O. R., R. S. Musii, and N. B. Melnyk. "Mathematical Modeling of Thermoelastic Behavior of Multilayer Electroconductive Cylindrical Bodies Under Electromagnetic Pulses." International Applied Mechanics (2025): 1-11. https://doi.org/10.1007/s10778-025-01308-x
Hachkevych, Oleksandr, Roman Musii, and Nataliya Melnyk. "Problems of thermomechanics of multilayered electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude." Advances in Mechanics: Current Research Results of the NAS of Ukraine. Cham: Springer Nature Switzerland, 2023. 185-206. https://doi.org/10.1007/978-3-031-37313-8_11
Hachkevych, Oleksandr, et al. "Selected Aspects of Thermomechanics of Ferrite Bodies Under Electromagnetic Actions." Selected Problems of Solid Mechanics and Solving Methods. Cham: Springer Nature Switzerland, 2024. 221-232. https://doi.org/10.1007/978-3-031-54063-9_16
Hachkevych, O. R., R. S. Musii, and N. B. Melnyk. "Mathematical Modeling of Thermoelastic Behavior of Multilayer Electroconductive Cylindrical Bodies Under Electromagnetic Pulses." International Applied Mechanics (2025): 1-11. https://doi.org/10.1007/s10778-025-01308-x
Hachkevych, O., and R. Musij. "Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude." Mathematical modeling and computing 6, Num. 1 (2019): 30-36. Available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=mmc_2019_6_1_6
Lotfy, Kh. "Transient disturbance in a half‐space under generalized magneto‐thermoelasticity with a stable internal heat source under three theories." Multidiscipline Modeling in Materials and Structures7.1 (2011): 73-90. https://doi.org/10.1108/15736101111141458
Yarymbash, Dmytro, et al. "A new simulation approach of the electromagnetic fields in electrical machines." 2017 International Conference on Information and Digital Technologies (IDT). IEEE, 2017. https://doi.org/10.1109/DT.2017.8024332
Papageorgiou, C., and E. Freeman. "Electromagnetic field solution for a coil of arbitrary shape moving relative to a set of ferromagnetic layers." IEEE Transactions on Magnetics 17.6 (2003): 2583-2585. https://doi.org/10.1109/TMAG.1981.1061555
Tegopoulos, John A., and Epameinondas E. Kriezis. "Eddy currents in linear conducting media." Studies in electrical and electronic engineering 16 (1985). Available at: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8879726
Mol'Chenko, L. V., and I. I. Loos. "The stress state of a flexible orthotropic spherical shell subject to external current and mechanical force in a magnetic field." International Applied Mechanics 49.5 (2013): 528-534. Available at: https://link.gale.com/apps/doc/A353212380/AONE?u=anon~c1c7ada2&sid=googleScholar&xid=d1449897
Mol’chenko, L. V., and I. I. Loos. "Axisymmetric Magnetoelastic Deformation of Flexible Orthotropic Shells of Revolutionwith Orthotropic Conductivity." International Applied Mechanics 51 (2015): 434-442. https://doi.org/10.1007/s10778-015-0704-8
Mol’chenko, L. V., and I. I. Loos. "Deformation of a circular cylinder of variable stiffness in a magnetic field: Geometrically nonlinear problem formulation." Mat. Meth. Fiz.-Mekh. Polya 51.3 (2008): 133-138.
Tozoni, O. V., and I. Mayergoyz. "Calculation of three-dimensional electromagnetic fields." Tekhnika, Kiev (1974).
Podol’cev A. D., Kucheryava I. M. Elementy teorii I chislennogo analiza electromagnitnykh processov v provodyaschikh sredakh [Elements of the theory and numerical calculation of electromagnetic processes in conducting media]. K: Instytut elektrodynamiky NANU (1999).
Zhyltsov, Andrii, et al. "The Secondary Sources Method." Systems, Decision and Control in Energy VI: Volume II: Power Engineering and Environmental Safety 2 (2024): 205. Available at: https://books.google.com.ua/books?hl=ru&lr=&id=Sj4jEQAAQBAJ&oi=fnd&pg=PA205&dq=The+method+of+secondary+sources+in+electrical+engineering&ots=aiWwZlJYLX&sig=W7PSs6KOikIYcCSPYLBKB_Ru97Q&redir_esc=y#v=onepage&q=The%20method%20of%20secondary%20sources%20in%20electrical%20engineering&f=false
Zhao, Qian, et al. "Numerical approach for the sensitivity of a high-frequency magnetic induction tomography system based on boundary elements and perturbation method." Measurement Science and Technology 24.7 (2013): 074004. https://doi.org/10.1088/0957-0233/24/7/074004
Pichon, L., and Adel Razek. "Hybrid finite-element method and boundary-element method using time-stepping for eddy-current calculation in axisymmetric problems." IEE Proceedings A (Physical Science, Measurement and Instrumentation 136.4 (1989): 217-222. https://doi.org/10.1049/ip-a-2.1989.0037
Salon, S. J., and J. Schneider. "A hybrid finite element-boundary integral formulation of Poisson's equation." IEEE Transactions on Magnetics 17.6 (2003): 2574-2576. https://doi.org/ https://doi.org/10.1109/TMAG.1981.1061622
Podol’cev, A. D., I. M. Kucheryava. "Mul’typhizychne modelyuvannya u elektrotekkhnici [Multiphysics modeling in electrical engineering]. Kyyiv." (2015). Available at: http://library.kpi.kharkov.ua/files/new_postupleniya/mulfmo.pdf
Podoltsev, O. D., and I. M. Kucheriava. "Multiphysics modeling of electrotechnical devices." Technical Electrodynamics/Tekhnichna Elektrodynamika 2 (2015): 3-15. http://dspace.nbuv.gov.ua/handle/123456789/136997
Podoltsev, O. D., V. B. Pavlov, and O. P. Zapadynchuk. "Analysis Of The Efficiency Of Electric Power Transmission In The System Of Wireless Charging Of The Electric Vehicle's Battery." Technical Electrodynamics/Tekhnichna Elektrodynamika 4 (2021): 63-69.
Ramezani, Ali, and Mehdi Narimani. "Optimal design of fully integrated magnetic structure for wireless charging of electric vehicles." IEEE Transactions on Transportation Electrification 7.4 (2021): 2114-2127. https://doi.org/10.1109/TTE.2021.3067875
Paolone, Mario, et al. "Lightning electromagnetic field coupling to overhead lines: Theory, numerical simulations, and experimental validation." IEEE Transactions on Electromagnetic Compatibility51.3 (2009): 532-547. https://doi.org/10.1109/TEMC.2009.2025958
Ren, Hengxin, Xiaofei Chen, and Qinghua Huang. "Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media." Geophysical Journal International 188.3 (2012): 925-944. https://doi.org/10.1111/j.1365-246X.2011.05309.x
Wang, B. X., et al. "Coupled numerical simulation on electromagnetic field and flow field in the round billet mould with electromagnetic stirring." Ironmaking & Steelmaking 42.1 (2015): 63-69. doi:10.1179/1743281214Y.0000000201
Li, J. H., et al. "3D numerical simulation for the transient electromagnetic field excited by the central loop based on the vector finite-element method." Journal of Geophysics and Engineering 8.4 (2011): 560-567. https://doi.org/10.1088/1742-2132/8/4/008
Zhang, Zhifeng, et al. "Numerical simulation on electromagnetic field, flow field and temperature field in semisolid slurry preparation by A-EMS." Rare Metals 29 (2010): 635-641. https://doi.org/10.1007/s12598-010-0184-2
Clemens, M., et al. "Numerical simulation of coupled transient thermal and electromagnetic fields with the finite integration method." IEEE Transactions on Magnetics 36.4 (2000): 1448-1452. https://doi.org/10.1109/20.877711
Ren, Bingzhi, et al. "Numerical simulation of electromagnetic field in round bloom continuous casting with final electromagnetic stirring." Metals 8.11 (2018): 903. https://doi.org/10.3390/met8110903
Cui, Xiaohui, et al. "Numerical simulation of electromagnetic sheet bulging based on FEM." The International Journal of Advanced Manufacturing Technology 57 (2011): 127-134. https://doi.org/10.1007/s00170-011-3273-y
Kegg, R. L., and K. Haverbeck. "Effect of process variables in electric discharge forming." Annals of the CIRP 11.3 (1962): 131-137.
Lippmann, Horst Joachim, and Horst Schreiner. "Zur Physik der Metallumformung mit hohen Magnetieldimpulsen." International Journal of Materials Research 55.12 (1964): 737-740. https://doi.org/10.1515/ijmr-1964-551203
Poynton, W. A., F. W. Travis, and W. Johnson. "The free radial expansion of thin cylindrical brass tubes using explosive gas mixtures." International Journal of Mechanical Sciences 10.5 (1968): 385-401. https://doi.org/10.1016/0020-7403(68)90004-0
Bauer, D. "Messung der Umformkraft und der Formänderung bei der Hochgeschwindigkeitsumformung rohrförmiger Werkstücke durch magnetische Kräfte." Bänder Bleche Rohre 6.10 (1965): 575-577.
Bach, F., et al. "Verhalten von Aluminumwerkstoffen bei der elektromagnetischen Blechumformung." Proc. 2. Kolloq. Elektromagnetische Umformung. Vol. 28. 2003: 11–18.
Risch, D., et al. "On the significance of the die design for electromagnetic sheet metal forming." Proc. of the ICHSF (2004): 191-200. Available at: https://d-nb.info/111181015X/34#page=201
Badelt, M., et al. "Process analysis of electromagnetic sheet metal forming by online-measurement and finite element simulation." Proceedings of the 6th International ESAFORM Conference on Material Forming, 28.-30. April 2003, Italy. 2003: 123–126.
Beerwald, C., et al. "New aspects of electromagnetic forming." Proceedings of the 6th International Conference on the Technology of Plasticity. Vol. 3. 1999: 2471–2476. https://doi.org/10.1109/TAP.2008.2005468
Johnson, Jason R., et al. "Coupling experiment and simulation in electromagnetic forming using photon doppler velocimetry." steel research international 80.5 (2009): 359-365. https://doi.org/10.2374/SRI08SP160
Dolan, Daniel H. "Foundations of VISAR analysis." (2006). Available at: https://www.osti.gov/biblio/886901
Fenton, Gregg K., and Glenn S. Daehn. "Modeling of electromagnetically formed sheet metal." Journal of Materials Processing Technology 75.1-3 (1998): 6-16. https://doi.org/10.1016/S0924-0136(97)00287-2
Takatsu, Nobuo, et al. "High-speed forming of metal sheets by electromagnetic force." JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry 31.1 (1988): 142-148. https://doi.org/10.1299/jsmec1988.31.142
Oliveira, D. A., and M. Worswick. "Electromagnetic forming of aluminium alloy sheet." Journal de Physique IV (Proceedings). Vol. 110. EDP sciences, 2003: 293–298. https://doi.org/10.1051/jp4:20020709
Bessonov, N., and S. Golovashchenko. "Numerical simulation of pulsed electromagnetic stamping processes." 1st International Conference on High Speed Forming, March 31, April 1, 2004, Dortmund, Germany. Institut für Umformtechnik-Technische Universität Dortmund, 2004: 83–91. Available at: https://www.researchgate.net/publication/43057066
Karch, C., and Karl Roll. "Transient simulation of electromagnetic forming of aluminium tubes." Advanced Materials Research 6 (2005): 639-648. https://doi.org/10.4028/www.scientific.net/AMR.6-8.639
Schinnerl, M., et al. "Multigrid methods for the three-dimensional simulation of nonlinear magnetomechanical systems." IEEE transactions on magnetics 38.3 (2002): 1497-1511. https://doi.org/10.1109/20.999123
Stiemer, Marcus, et al. "Algorithmic formulation and numerical implementation of coupled electromagnetic‐inelastic continuum models for electromagnetic metal forming." International journal for numerical methods in engineering 68.13 (2006): 1301-1328. https://doi.org/10.1002/nme.1738
Unger, J., et al. "Multifield modeling of electromagnetic metal forming processes." Journal of Materials Processing Technology177.1-3 (2006): 270-273. https://doi.org/10.1016/j.jmatprotec.2006.03.190
Stiemer, M., et al. "An arbitrary Lagrangian Eulerian approach to the three-dimensional simulation of electromagnetic forming." Computer Methods in Applied Mechanics and Engineering 198.17-20 (2009): 1535-1547. https://doi.org/10.1016/j.cma.2009.01.014
Unger, J., et al. "Strategies for 3D simulation of electromagnetic forming processes." Journal of materials processing technology199.1-3 (2008): 341-362. https://doi.org/10.1016/j.jmatprotec.2007.08.028
Svendsen, B., and T. Chanda. "Continuum thermodynamic modeling and simulation of electromagnetic metal forming." Technische Mechanik-European Journal of Engineering Mechanics23.2-4 (2003): 103-112. Available at: https://journals.ub.ovgu.de/index.php/techmech/article/view/998
Conraux, Ph, et al. "3D finite element modeling of electromagnetic forming processes." (2006): 73–82. Available at: https://d-nb.info/110449129X/34
Cui, Xiaohui, et al. "Numerical simulation of electromagnetic sheet bulging based on FEM." The International Journal of Advanced Manufacturing Technology 57 (2011): 127-134. https://doi.org/10.1007/s00170-011-3273-y
Deng, Jianghua, et al. "Numerical simulation of magnetic flux and force in electromagnetic forming with attractive force." Journal of materials processing technology 184.1-3 (2007): 190-194. https://doi.org/10.1016/j.jmatprotec.2006.11.021
Liu, Xianlong, Liang Huang, and Jianjun Li. "An experiment and simulation study of the rebound effect in electromagnetic forming process." 6th International Conference on High Speed Forming, March 27th-29th 2014, Daejeon, Korea. 2014: 131–140. Available at:https://eldorado.tu-dortmund.de/server/api/core/bitstreams/80bb48e3-5640-4f10-96fd-243e59440291/content
Khan, Zarak, et al. "Numerical and experimental investigation of the effect of process parameters on sheet deformation during the electromagnetic forming of AA6061-T6 alloy." Mechanical Sciences11.2 (2020): 329-347. https://doi.org/10.5194/ms-11-329-2020
Li, Hong-wei, et al. "Analysis of forming defects in electromagnetic incremental forming of a large-size thin-walled ellipsoid surface part of aluminum alloy." Journal of Materials Processing Technology 255 (2018): 703-715 https://doi.org/10.1016/j.jmatprotec.2018.01.024
Doley, J., and S. Kore. "FEM study on electromagnetic formability of AZ31B magnesium alloy." 6th International Conference on High Speed Forming. 2014: 273–280.
Vovk, A., et al. "Mathematical modeling of impulsive forming processes using various energy sources and transmitting medium." (2006): 95–101. Available at: https://www.researchgate.net/.../Proceedings-of-the-2nd-international-conference-on-high-speed-forming-March-20th-21st-2006-Dortmund-Germany.pdf#page=109
L'Eplattenier, Pierre, et al. "Introduction of an electromagnetism module in LS‐DYNA for coupled mechanical‐thermal‐electromagnetic simulations." Steel research international 80.5 (2009): 351-358. https://doi.org/10.2374/SRI08SP152
El-Azab, Anter, Mark Garnich, and Ashish Kapoor. "Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs." Journal of Materials Processing Technology 142.3 (2003): 744-754. https://doi.org/10.1016/S0924-0136(03)00615-0
Oliveira, Dino A., M. J. Worswick, and M. Finn. "Simulation of electromagnetic forming of aluminum alloy sheet." SAE transactions (2001): 687-695. http://www.jstor.org/stable/44699826
Siddiqui, M. A., et al. "A numerical model to simulate electromagnetic sheet metal forming process." International Journal of Material Forming 1 (2008): 1387-1390. https://doi.org/10.1007/s12289-008-0123-z
Siddiqui, M. A., et al. "A numerical model to simulate electromagnetic sheet metal forming process." International Journal of Material Forming 1 (2008): 1387-1390. https://doi.org/10.3233/JAE-131653
Zapata, Jose R. Alves, and François Bay. "Modeling and analysis of electromagnetism in magnetic forming processes." IEEE Transactions on Magnetics 52.5 (2015): 1-11. https://doi.org/10.1109/TMAG.2015.2501758
Shin, Chansun, et al. "Expansion of a low conductive metal tube by an electromagnetic forming process: finite element modeling." Metals and Materials International 14 (2008): 91-97. https://doi.org/10.3365/met.mat.2008.02.091
Li, Fenqiang, et al. "3D Numerical simulation method of electr omagnetic forming for low conductive metals with a driver." The International Journal of Advanced Manufacturing Technology64 (2013): 1575-1585. https://doi.org/10.1007/s00170-012-4124-1
Cui, X. H., et al. "Electromagnetic incremental forming (EMIF): a novel aluminum alloy sheet and tube forming technology." Journal of Materials Processing Technology 214.2 (2014): 409-427. https://doi.org/10.1016/j.jmatprotec.2013.05.024
Cao, Quanliang, et al. "Dynamic analysis of electromagnetic sheet metal forming process using finite element method." The International Journal of Advanced Manufacturing Technology 74 (2014): 361-368. https://doi.org/10.1007/s00170-014-5939-8
Haratmeh, Hossein Ebrahimi, Alireza Fallahi Arezoodar, and Mohmoud Farzin. "Numerical and experimental investigation of inward tube electromagnetic forming." The International Journal of Advanced Manufacturing Technology 88 (2017): 1175-1185. https://doi.org/10.1007/s00170-016-8826-7
Savadkoohian, Hossein, Alireza Fallahi Arezoodar, and Behrooz Arezoo. "Analytical and experimental study of wrinkling in electromagnetic tube compression." The International Journal of Advanced Manufacturing Technology 93 (2017): 901-914. https://doi.org/10.1007/s00170-017-0571-z
Dond, Shantaram, et al. "Analysis of the variation of the discharge circuit parameters during electromagnetic forming processes." International Journal of Precision Engineering and Manufacturing20 (2019): 375-382. https://doi.org/10.1007/s12541-019-00029-9
Cui, Xiaohui, et al. "Numerical simulation of electromagnetic sheet bulging based on FEM." The International Journal of Advanced Manufacturing Technology 57 (2011): 127-134. https://doi.org/10.1007/s00170-011-3273-y
Noh, Hak-Gon, et al. "Inverse parameter estimation of the Cowper-Symonds material model for electromagnetic free bulge forming." International Journal of Precision Engineering and Manufacturing17 (2016): 1483-1492. https://doi.org/10.1007/s12541-016-0174-x
Satonkar, Nilesh, Gopalan Venkatachalam, and Shenbaga Velu Pitchumani. "Finite element analysis of electromagnetic forming process and optimization of process parameters using RSM." Mathematics 12.11 (2024): 1622. https://doi.org/10.3390/math12111622
Asati, Ruchi, and S. K. Pradhan. "Two-stage Finite Element simulation to predict deformation and stresses in Electromagnetic Formed component." Procedia Manufacturing 12 (2017): 42-58. https://doi.org/10.1016/j.promfg.2017.08.007
Satonkar, Nilesh, and Venkatachalam Gopalan. "Simulation of electromagnetic forming process and optimization of geometric parameters of perforated Al sheet using RSM." Mathematics 11.9 (2023): 1983. https://doi.org/10.3390/math11091983
Long, Anlin, et al. "3D modeling strategies for simulating electromagnetic superposed forming processes." International Journal of Mechanical Sciences 138 (2018): 409-426. https://doi.org/10.1016/j.ijmecsci.2018.02.021
Nouri, Hossein. "Development of One-Dimensional Semi-Coupled Field Electromagnetic-Thermal Model on Electromagnetic Tube Forming." Process Integration and Optimization for Sustainability6.2 (2022): 471-482. https://doi.org/10.1007/s41660-022-00225-7
Li, She, and Xiangyang Cui. "Combined “mesh flow” and “re-meshing” technique for coupled magnetic-mechanical problem on electromagnetic forming process." The International Journal of Advanced Manufacturing Technology 106 (2020): 5111-5127. https://doi.org/10.1007/s00170-020-04980-0
Alves, José, et al. "Advancements in the Simulation of Magnetic Pulse Forming Processes with FORGE®." Forming the Future: Proceedings of the 13th International Conference on the Technology of Plasticity. Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-75381-8_101
Chetry, Avinash, and Arup Nandy. "Development of coupled finite element model to investigate electromagnetic forming and simultaneous multi-point perforations of Aluminium tube." International Journal of Material Forming 18.1 (2025): 1-16. https://doi.org/10.1007/s12289-024-01871-7