МЕТОДИ МОДЕЛЮВАННЯ ДИНАМІЧНОЇ ПОВЕДІНКИ, ВИЗНАЧЕННЯ МІЦНОСТІ ТА ОЦІНКИ КОНСТРУКЦІЙНОЇ СТІЙКОСТІ КОМПОЗИЦІЙНИХ ЛОПАТОК РОТОРНИХ МАШИН
DOI:
https://doi.org/10.20998/2078-9130.2024.2.314978Ключові слова:
профіль лопатки; композиційний матеріал; міцність; конструкційна стійкість; експериментальне дослідженняАнотація
Робота розглядає методи кріплення та аналізу композиційних лопаток роторних машин, а саме варіанти з’єднання металевих та композиційних частин, підходи до створення розрахункової моделі та моделювання статичної і динамічної механічної поведінки композиційних лопаток та способи визначення їхньої міцності за різними критеріями з урахуванням особливостей з’єднань. З цією метою проведений детальний огляд наявних в літературі застосувань композиційних лопаток в роторних машинах різного призначення, а також наведені варіанти поєднання композиційних та металевих частин для визначення найбільш оптимального підходу до створення міцної лопатки, що складається з таких частин. Спосіб побудови розрахункової моделі включає в себе особливості кріплення, проілюстровані на прикладі композиційної лопатки ротора, яка містить сталевий хвостовик та композиційний аеродинамічний профіль із шарами різної товщини та ребрами жорсткості, що з’єднують дві бокові поверхні профілю та проходять вздовж радіального напрямку ротора від кореневого до периферійного перерізів профілю лопатки для забезпечення його міцності та конструкційної стійкості. Аналіз міцності композиційної лопатки виконується на основі критеріїв, спеціально розроблених для композиційних матеріалів, зокрема критерію Хашина. Конструкційну стійкість композиційного профілю лопатки запропоновано аналізувати під дією аеродинамічного тиску потоку для визначення його критичного значення, при якому може статись втрата стійкості за визначеними формами. Динамічні характеристики профілю знаходяться у вигляді власних частот та власних форм коливань з урахуванням переднапруженого стану від відцентрових сил та аеродинамічного тиску потоку. Ідентифікацію властивостей композиційного матеріалу аеродинамічного профілю лопатки пропонується проводити за допомогою чисельних експериментів та натурних експериментальних досліджень, а адекватність моделювання його механічної поведінки та міцності може бути перевірена на основі розглянутого у роботі стенду.
Посилання
Martynenko V.G. An original technique for modeling of anisotropic viscoelasticity of orthotropic materials in finite element codes applied to the mechanics of plates and shells. Mechanics and Mechanical Engineering. 2017, vol. 21, no. 2, pp. 389-413.
Merculov V., Kostin M., Martynenko G., Smetankina N., Martynenko V. Force Simulation of Bird Strike Issues of Aircraft Turbojet Engine Fan Blades. Lecture Notes in Networks and Systems. 2022, vol. 305, pp. 129-141. https://doi.org/10.1007/978-3-030-83368-8_13
Merculov V., Kostin M., Martynenko G., Smetankina N., Martynenko V. Peculiarities of the Modelling of the Bird Dynamic Impact on Fan Blades of an Aircraft Turbojet Engine at Operating Modes. Lecture Notes in Networks and Systems. 2022, vol. 367, pp. 462-473. https://doi.org/10.1007/978-3-030-94259-5_39
Merculov V., Kostin M., Martynenko G., Smetankina N., Martynenko V. Improving the accuracy of the behaviour simulation of the material of the turbojet aircraft engine fan rotor blades in the event of a bird strike by using adapted finite element computational models. Materials Today: Proceedings. 2022, vol. 59, pp. 1797-1803. https://doi.org/10.1016/j.matpr.2022.04.381
Martynenko G., Chernobryvko M., Avramov K., Martynenko V., Tonkonozhenko A., Kozharin V., Klymenko D. Numerical simulation of missile warhead operation. Advances in Engineering Software. 2018, vol. 123, pp. 93-103. https://doi.org/10.1016/j.advengsoft.2018.07.001
Brøndsted P., Nijssen R.P.L., Goutianos S. Advances in wind turbine blade design and materials. Cambridge, Woodhead Publishing, 2023. 510 p.
Jiang Y., Finnegan W., Wallace F., Flanagan M., Flanagan T., Goggins J. Structural analysis of a fibre-reinforced composite blade for a 1 MW tidal turbine rotor under degradation of seawater. Journal of Ocean Engineering and Marine Energy. 2023, vol. 9, no. 3, pp. 477-494. https://doi.org/10.1007/s40722-023-00279-w
Silva Junior L.M. Stress analysis of a thin-walled composite blade of a large wind turbine. Florianópolis, Federal University of Santa Catarina, 2016. 116 p.
Bir G., Migliore P. Preliminary structural design of composite blades for two- and three-blade rotors. Golden, National Renewable Energy Laboratory, 2004. 30 p. https://doi.org/10.2172/15009673
DiPalma M., Ferede E., Gandhi F. Optimization of extension-twist coupled composite blades for high-speed rotorcraft. 74th American Helicopter Society Annual Forum. Phoenix, Phoenix Convention Center, 2018, pp. 1-14.
Martynenko V. Analysis of strength and bearing capacity of the auxiliary mine ventilation fan connected to the rotor of its electrical drive. 2020 IEEE KhPI Week on Advanced Technology. Kharkiv, NTU “KhPI”, 2020, pp. 19-23. https://doi.org/10.1109/KhPIWeek51551.2020.9250078
Fernandez G., Usabiaga H., Vandepitte D. An efficient procedure for the calculation of the stress distribution in a wind turbine blade under aerodynamic loads. Journal of Wind Engineering and Industrial Aerodynamics. 2018, vol. 172, pp. 42-54. https://doi.org/10.1016/j.jweia.2017.11.003
Ozyildiz M., Muyan C., Coker D. Strength analysis of a composite turbine blade using Puck failure criteria. Journal of Physics: Conference Series. 2018, vol. 1037, P. 1-11. https://doi.org/10.1088/1742-6596/1037/4/042027
Dimitrov N., Friis-Hansen P., Berggreen C. Reliability analysis of a composite wind turbine blade section using the model correction factor method: Numerical study and validation. Applied Composite Materials. 2013, vol. 20, no. 1, pp. 17-39. https://doi.org/10.1007/s10443-011-9246-3
Gao J.X., An Z.W., Ma Q., Bai X.Z. Residual strength assessment of wind turbine rotor blade composites under combined effects of natural aging and fatigue loads. Eksploatacja i Niezawodnosc. 2020, vol. 22, no. 4, pp. 601-609. https://doi.org/10.17531/ein.2020.4.3
Lagdani O., Tarfaoui M., Nachtane M., Trihi M., Laaouidi H. Modal analysis of an iced offshore composite wind turbine blade. Wind Engineering. 2022, vol. 46, no. 1, pp. 134-149. https://doi.org/10.1177/0309524X211011685
Nijssen R.P.L. Fatigue life prediction and strength degradation of wind turbine rotor blade composites. Wieringerwerf, Knowledge Centre: Wind Turbine Materials and Constructions, 2006. 242 p.
Muyan C., Coker D. Strength analysis of a 5-m composite wind turbine blade under static and fatigue loading conditions. IOP Conference Series: Materials Science and Engineering. 2020, vol. 942, pp. 1-15. https://doi.org/10.1088/1757-899X/942/1/012045
Zhou H.F., Dou H.Y., Qin L.Z., Chen Y., Ni Y.Q., Ko J.M. A review of full-scale structural testing of wind turbine blades. Renewable and Sustainable Energy Reviews. 2014, vol. 33, pp. 177-187. https://doi.org/10.1016/j.rser.2014.01.087
Morăraș C.I., Goanță V., Istrate B., Munteanu C., Dobrescu G.S. Structural testing by torsion of scalable wind turbine blades. Polymers. 2022, vol. 14, no. 19, pp. 3937. https://doi.org/10.3390/polym14193937
Nixon M.W. Preliminary structural design of composite main rotor blades for minimum weight. Hampton, NASA Scientific and Technical Information Office, 1987. 25 p.
Piatak D.J., Nixon M.W., Kosmatka J.B. Stiffness characteristics of composite rotor blades with elastic couplings. Hampton, NASA Scientific and Technical Information Office, 1997. 44 p.
Moura G.A., Kolar R. Approach for analysis and design of composite rotor blades. Journal of Aircraft. 1992, vol. 29, no. 4, pp. 516-523. https://doi.org/10.2514/3.46221
Işık A.A. Structural optimization of composite helicopter rotor blades. Ankara, Middle East Technical University, 2018. 142 p.
Li L. Structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties. Georgia, Georgia Institute of Technology, 2008. 107 p.
Kumar D. Design and analysis of composite rotor blades for active/passive vibration reduction. Michigan, University of Michigan, 2013. 375 p.
Chandra R., Chopra I. Structural behavior of two-cell composite rotor blades with elastic couplings. AIAA Journal. 1992, vol. 30, no. 12, pp. 2914-2921. https://doi.org/10.2514/3.11637
Han S., Bauchau O.A. High-fidelity, 3D stress prediction for composite rotor blades. 73rd American Helicopter Society Annual Forum. Fort Worth, 2017, pp. 1-8.
Kliza R., Ścisłowski K., Siadkowska K., Padyjasek J., Wendeker M. Strength analysis of a prototype composite helicopter rotor blade spar. Applied Computer Science. 2022, vol. 18, no. 1, pp. 5-19. https://doi.org/10.35784/acs-2022-1
Gu H., Shaw A.D., Amoozgar M., Zhang J., Wang C., Friswell M.I. Twist morphing of a composite rotor blade using a novel metamaterial. Composite Structures. 2020, vol. 254, pp. 1-10. https://doi.org/10.1016/j.compstruct.2020.112855
Maksimović S., Maksimović K., Vasović I., Maksimović M., Stamenković D. Strength analysis of helicopter main rotor blade made from composite material. Acta Technica Corviniensis - Bulletin of Engineering. 2020, vol. 13, pp. 23-26.
Hadăr A., Voicu A.D., Baciu F., Vlăsceanu D., Tudose D.I., Pastramă Ş.D. A novel composite helicopter tail rotor blade with enhanced mechanical properties. Aerospace. 2023, vol. 10, no. 7. https://doi.org/10.3390/aerospace10070647
Tian S., Tao F., Du H., Yu W., Lim J.W., Haehnel R.B., Wenren Y., Allen L.D. Structural design optimization of composite rotor blades with strength considerations. AIAA SCITECH 2022 Forum. San Diego, Manchester Grand Hyatt San Diego, 2022. https://doi.org/10.2514/6.2022-2454
Roy A.M. Finite element framework for efficient design of three dimensional multicomponent composite helicopter rotor blade system. Eng. 2021, vol. 2, no. 1, pp. 69-79. https://doi.org/10.3390/eng2010006
Yu G., Li X., Huang W. Performance and damage study of composite rotor blades under impact. Polymers. 2024, vol. 16, no. 5 pp. 1-20. https://doi.org/10.3390/polym16050623
Czyż Z., Podolak P., Skiba K., Jakubczak P., Karpiński P., Różylo P. Autogyro main rotor blade strength tests. 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace). Milan, Politecnico di Milano, 2023, pp. 199-204. https://doi.org/10.1109/MetroAeroSpace57412.2023.10190031
Signorelli R.A. Review of status and potential tungsten-wire - superalloy composites for advanced gas turbine engine blades. Washington, D.C., National Aeronautics and Space Administration, 1972. 22 p.
Benoit J.M.D., Dambrine B.J.G., David L.J.P., Fouche P., Girault D.G., Grosbois C.G.R., Guet C.L.F. Gas turbine blade comprising layers of composite material. Google Patents US5308228, 1994. Available at: https://patents.google.com/patent/US5308228A. (accessed 5.11.2024)
Abumeri G.H., Kuguoglu L.H., Chamis C.C. Composite fan blade design for advanced engine concepts. Cleveland, NASA Glenn Research Center, 2004. 12 p.
Coroneos R.M., Gorla R.S.R. Structural analysis and optimization of a composite fan blade for future aircraft engine. International Journal of Turbo and Jet-Engines. 2012, vol. 29, no. 3, pp. 131-164. https://doi.org/10.1515/tjj-2012-0024
Sung Y.J., Jun Y.U., Park J.S. A study on stacking sequence design of composite fan blades using multi-level optimization. Journal of Physics: Conference Series. 2020, vol. 1509, pp. 1-10. https://doi.org/10.1088/1742-6596/1509/1/012019
Vimal R.K. Improving fatigue life of gas turbine fan blade using advanced composite materials / R.K. Vimal, G. Dhanjayan // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 455. – P. 1-9. https://doi.org/10.1088/1757-899X/455/1/012035
Xiao J.G.Y., Chen Y., Tian J., Ou-Yang H., Wang A. Numerical investigation of rub-induced composite fan blade vibrations and abradable coating removals. Composite Structures. 2019, vol. 226, pp. 1-16. https://doi.org/10.1016/j.compstruct.2019.111274
Yella G., Jadhav P., Lande C. Bird-strike analysis on hybrid composite fan blade: blade-level validation. Aerospace. 2023, vol. 10, no. 5, pp. 1-13. https://doi.org/10.3390/aerospace10050435
Schmid T., Lengyel-Kampmann T., Schmidt T., Nicke E. Optimization of a carbon-fiber composite blade of a counter-rotating fan for aircraft engines. 13th European Conference on Turbomachinery Fluid dynamics & Thermodynamics. Lausanne, École Polytechnique Fédérale de Lausanne EPFL, 2019, pp. 1-12. https://doi.org/10.29008/ETC2019-432
Nakonetchnyi Y., Yarema I., Batiuk V. Calculation of the stress-strain state of blades made of polymer composite materials of starting turboexpanders in resonance zones. Scientific Journal of the Ternopil National Technical University. 2021, vol. 102, no. 2, pp. 45-53. https://doi.org/10.33108/visnyk_tntu2021.02.045
Porco P., Przysowa R., Botto D. Analysis of fan blade vibration with a non-contact method. Journal of Konbin. 2020, vol. 50, no. 1, pp. 341-357. https://doi.org/10.2478/jok-2020-0020
Zhu L., Xu J., Zhang W. Mechanical simulation analysis of lightweight blades using glass fiber phenolic resin composites. IOP Conference Series: Earth and Environmental Science. 2021, vol. 769, pp. 1-8. https://doi.org/10.1088/1755-1315/769/3/032071
Qi B., He S., Cao X. Research on design of lightweight-blade metro fan based on glass fiber and phenolic resin composite. IOP Conference Series: Earth and Environmental Science. 2021, vol. 769, pp. 1-6. https://doi.org/10.1088/1755-1315/769/3/032070
Chandragowda M., Chakrasali C., Yogeshwara R.S., Krishna G., Abhishek P. Designing and enhancing the mechanical properties of composite fan blades by glass fiber reinforced polymer composites. Journal of Scholastic Engineering Science and Management. 2022, vol. 1, no. 1, pp. 16-25.
HORTON On-Highway Fans. Available at: https://www.hortonww.com/on-highway/fans.html. (accessed 5.11.2024)
MOSS COMPOSITES Axial Fan Composite Rotorblade. Available at: https://www.moss-composites.com/axial-fan-composite-blades. (accessed 5.11.2024)
ESTA LTD Industrial Fans. Available at: https://esta-ltd.com.ua/en/products-3/fan-3. (accessed 5.11.2024)
Simonović A., Kostić I., Stupar S., Petrović Z. Laboratory tests of a hybrid metal-composite transport helicopter blade segment. Experimental Techniques. 2012, vol. 36, pp. 22-32. https://doi.org/10.1111/j.1747-1567.2011.00708.x
Wang Y., Soutis C. A finite element and experimental analysis of composite T-joints used in wind turbine blades. Applied Composite Materials. 2018, vol. 25, pp. 953-964. https://doi.org/10.1007/s10443-018-9711-3
Petersen E., Englisch N., Brand L.-M., Mahrholz T., Hühne C. Potential of fibre metal laminates in root joints of wind energy turbine rotor blades. Journal of Physics: Conference Series. 2022, vol. 2265, pp. 1-11. https://doi.org/10.1088/1742-6596/2265/3/032039
Sørensen B.F., Jacobsen T.K. Joining structural parts of composite materials for large rotorblades (invited paper). Polymer composite materials for wind power turbines. Proceedings. 2006, pp. 69-82.
Nasreen A., Bangash M.K., Shaker K., Nawab Y. Effect of surface treatment on stiffness and damping behavior of metal-metal and composite-metal adhesive joints. Polymers. 2023, vol. 15, p. 1-15. https://doi.org/10.3390/polym15020435
Galińska A. Mechanical joining of fibre reinforced polymer composites to metals—a review. Part I: Bolted joining. Polymers. 2020, vol. 12, no. 10, pp. 1-48. https://doi.org/10.3390/polym12102252
An Q., Wang C., Ma T., Zou F., Fan Z., Zhou E., Ge E., Chen M. Aeronautical composite/metal bolted joint and its mechanical properties: a review. Journal of Intelligent Manufacturing and Special Equipment. 2024, vol. 5, pp. 70-91. https://doi.org/10.1108/JIMSE-12-2023-0012
Galińska A., Galiński C. Mechanical joining of fibre reinforced polymer composites to metals—a review. Part II: Riveting, clinching, non-adhesive form-locked joints, pin and loop joining. Polymers. 2020, vol. 12, no. 8, pp. 1-40. https://doi.org/10.3390/polym12081681
Lambiase F., Scipioni S.I., Lee C.-J., Ko D.-C., Liu F. A state-of-the-art review on advanced joining processes for metal-composite and metal-polymer hybrid structures. Materials. 2021, vol. 14, no. 8, pp. 1-24. https://doi.org/10.3390/ma14081890
Di Scalea F.L., Cappello F., Cloud G.L. On the effect of interference fits in compo-site pin-joints. Journal of Thermoplastic Composite Materials. 1999, vol. 12, no. 1, pp. 23-32. https://doi.org/10.1177/089270579901200103
Parkes P.N., Butler R., Meyer J., de Oliveira A. Static strength of metal-composite joints with penetrative reinforcement. Composite Structures. 2014, vol. 118, pp. 250-256. https://doi.org/10.1016/j.compstruct.2014.07.019
Tang H., Liu L. A novel metal-composite joint and its structural performance. Composite Structures. 2018, vol. 206, pp. 33-41. https://doi.org/10.1016/j.compstruct.2018.07.111
Sarantinos N., Tsantzalis S., Ucsnik S., Kostopoulos V. Review of through-the-thickness reinforced composites in joints. Composite Structures. 2019, vol. 229, pp. 1-20. https://doi.org/10.1016/j.compstruct.2019.111404
Liu L. A study of the damage tolerance of composite-metal hybrid joints reinforced by multiple and penetrative thin pins. Composites and Advanced Materials. 2022, vol. 31, pp. 1-13. https://doi.org/10.1177/26349833221105523
Jahn J., Weeber M., Boehner J., Steinhilper R. Assessment strategies for composite-metal joining technologies – a review. Procedia CIRP. 2016, vol. 50, pp. 689-694. https://doi.org/10.1016/j.procir.2016.05.034
Wang X., Ahn J., Kaboglu C., Yu L., Blackman B.R.K. Characterisation of composite-titanium alloy hybrid joints using digital image correlation. Composite Structures. 2016, vol. 140, pp. 702-711. https://doi.org/10.1016/j.compstruct.2015.12.023
Baffari D., Buffa G., Campanella D., Valvo E.L., Fratini L. Experimental and numerical investigation on a new FSW based metal to composite joining technique. Journal of Manufacturing Processes. 2018, vol. 34, part B, pp. 758-764. https://doi.org/10.1016/j.jmapro.2018.03.048
Dong J., Cui X., Zhao P., Wang D. Summary of composite material-metal connection technology. IOP Conference Series: Earth and Environmental Science. 2021, vol. 632, pp. 1-7. https://doi.org/10.1088/1755-1315/632/5/052035
Das R., Mouritz A.P. Composite-to-metal joining using interference fit micropins. Composites Part A: Applied Science and Manufacturing. 2022, vol. 156, pp. 1-12. https://doi.org/10.1016/j.compositesa.2022.106895
Martynenko V.G., Hrytsenko N.I., Mavrody S.V. Proektuvannya, analiz ta eksperymentalʹne doslidzhennya statychnoyi mitsnosti kompozytsiynoyi bimetalichnoyi lopatky ventylyatora holovnoho provitryuvannya shakhty [Design, analysis and experimental study of static strength of composite bimetal blade of mine main ventilation fan]. Visnyk NTU "KhPI" [Bulletin of the National Technical University "KhPI"]. Kharkov, NTU "KhPI" Publ., 2018, no. 38 (1314), pp. 20-31. https://doi.org/10.20998/2078-9130.2018.38.152477
Martynenko V.G. Chyselʹne ta eksperymentalʹne doslidzhennya konichnoho z'yednannya lopatky rotornoyi mashyny [Numerical and experimental study of the conical connection of the blade of a rotary machine] Visnyk NTU "KhPI" [Bulletin of the National Technical University "KhPI"]. Kharkov, NTU "KhPI" Publ., 2023, no 1, pp. 14-20. https://doi.org/10.20998/2078-9130.2023.1.284029
Luterbacher R., Molter L. Connection element for composite and steel structures. Lightweight Design Worldwide. 2018, vol. 11, pp. 14-19. https://doi.org/10.1007/s41777-018-0007-y
Martynenko V.G. Kompleksna otsinka mitsnosti kompozytsiynoyi lopatky ventylyatora holovnoho provitryuvannya shakhty [Comprehensive assessment of the mine main ventilation fan composite blade strength]. Visnyk NTU "KhPI" [Bulletin of the National Technical University "KhPI"]. Kharkov, NTU "KhPI" Publ., 2021, no. 1, pp. 10-14. https://doi.org/10.20998/2078-9130.2021.1.232865
Martynenko V., Hrytsenko M., Martynenko G. Technique for evaluating the strength of composite blades. Journal of The Institution of Engineers (India): Series C. 2020, vol. 101, pp. 451-461. https://doi.org/10.1007/s40032-020-00572-9
Moukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics – an advanced introduction with OpenFOAM® and Matlab. Springer Cham, 2016. 791 p. https://doi.org/10.1007/978-3-319-16874-6
Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit. Reno, American Institute of Aeronautics and Astronautics, 1992, pp. 5-21. https://doi.org/10.2514/6.1992-439
Jones W.P., Launder B.E. The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer. 1972, vol. 15, is. 2, pp. 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
Wilcox D.C. Turbulence modeling for CFD. La Cañada, DCW Industries, 1998. 522 p.
Menter F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics. 2009, vol. 23, no. 4, pp. 305-316. https://doi.org/10.1080/10618560902773387
Mises R.V. Mechanik der festen Körper im plastisch-deformablen Zustand [Mechanics of solid bodies in plastic deformation state]. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen (Mathematisch-physikalische Klasse) [News from the Society of Sciences in Göttingen (Mathematical-Physical Class)]. 1913, vol. 1, pp. 582-592.
Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1948, vol. 193, pp. 281-297. https://doi.org/10.1098/rspa.1948.0045
Hoffman O. The brittle strength of orthotropic materials. Journal of Composite Materials. 1967, vol. 1, no. 2, pp. 200-206. https://doi.org/10.1177/00219983670010021062
Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials. Journal of Composite Materials. 1971, vol. 5, no. 1, pp. 58-80. https://doi.org/10.1177/002199837100500106
Hashin Z., Rotem A. A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials. 1973, vol. 7, no. 4, pp. 448-464. https://doi.org/10.1177/002199837300700404
Hashin Z. Failure criteria for unidirectional fiber composites. ASME Journal of Applied Mechanics. 1980, vol. 47, no. 2, pp. 329-334. https://doi.org/10.1115/1.3153664
Davila C., Navin J. Failure criteria for FRP laminates in plane-stress. Hampton, NASA Langley Research Center, 2003. 23 p.
Davila C., Camanho P., Rose C. Failure criteria for FRP laminates. Journal of Composite Materials. 2005, vol. 39, ss. 4, pp. 323-345. https://doi.org/10.1177/0021998305046452
Martynenko V.G., Lvov G.I. Chyselʹno-eksperymentalʹna protsedura vyznachennya efektyvnykh kharakterystyk ta mitsnosti armovanoho kompozyta [Numerical-experimental procedure for determining effective characteristics and strength of reinforced composite]. Vcheni zapysky Tavriysʹkoho natsionalʹnoho universytetu imeni V.I. Vernadsʹkoho. Seriya Tekhnichni nauky [Academic notes of the Tavri National University named after V.I. Vernadsky. Series Technical sciences]. 2018, no 68 (6), pp. 7-14.
Martynenko V.G., Lvov G.I., Ulianov Y.N. Experimental investigation of anisotropic viscoelastic properties of glass fiber-reinforced polymeric composite material. Polymers and Polymer Composites. 2019, vol. 27, is. 6, pp. 323-336. https://doi.org/10.1177/0967391119846362
Vinson J.R. Buckling of composite material shells. Solid Mechanics and Its Applications. 1993, vol 18, pp. 417-426. https://doi.org/10.1007/978-94-015-8141-7_20
Ferreira A.J.M., Barbosa J.T. Buckling behaviour of composite shells. Composite Structures. 2000, vol. 50, is. 1, pp. 93-98. https://doi.org/10.1016/S0263-8223(00)00090-8
Zhang X., Li Z., Yang Z., Jiang L., Pan G. Buckling of composite shells with a novel initial imperfection model subjected to hydrostatic pressure. Composite Structures. 2022, vol. 297, pp. 115949. https://doi.org/10.1016/j.compstruct.2022.115949
Chen X., Liu Y. Finite element modeling and simulation with ANSYS Workbench. Boca Raton, CRC Press, 2018. 457 p. https://doi.org/10.1201/9781351045872
Martynenko V.G., Lvov G.I. Numerical prediction of temperature-dependent anisotropic viscoelastic properties of fiber reinforced composite. Journal of Reinforced Plastics and Composites. 2017, vol. 36, is. 24, pp. 1790-1801. https://doi.org/10.1177/0731684417727064