Сучасний алгоритм лінійного та квадратичного програмування в оптимізації та задачах деформування конструкцій змінної структури в умовах контактування
DOI:
https://doi.org/10.20998/2078-9130.2023.2.293695Анотація
Різноманітні математичні задачі, в яких поставлена мета пошуку екстремуму функціоналу, відносяться до задач математичного програмування, задач оптимізації. Практично спрямованих проблем пошуку оптимального рішення надзвичайно багато в економіці, управлінні, техніці та інших. Вони пов’язані з підвищенням ефективності виробництва, зниженням витрат ресурсів, удосконаленням конструктивних рішень та технологічних процесів, зниженням маси, габаритів тощо. Серед них важлива роль приділяється методам обмеження максимальних напружень, обумовлених зовнішніми навантаженнями. Розв'язання таких задач розпочинається з математичної формалізації. В якості параметрів варіювання вибирають конструктивні, економічні або технологічні показники. Пошук найкращого рішення зводиться до підбору сукупності параметрів, які надають стаціонарне значення функції цілі. Екстремальні задачі практичної орієнтації містять в математичних моделях обмеження типу рівності-нерівності. В поліпшенні технічних характеристик машин суттєва роль належить інженерно-технічним працівникам, які на етапі проектування знаходять оптимальні варіанти. При цьому суттєвим елементом процесу проектування є моделювання визначальних процесів в конструкціях з врахуванням основних факторів впливу та сценаріїв поведінки. Оптимізація – важливий напрямок прикладної математики, який надає ефективні інструменти проведення такого моделювання. В роботі [3] запропоновано Universal Algorithm − чисельну схему рішення задач квадратичного програмування (КП), для обчислення оптимальної точки широкого кола прикладних задач. При цьому задача лінійного програмування (ЛП) розглядається як частинний випадок задачі (КП). Тобто в універсальному алгоритмі постановки 2-х задач оптимізації формалізовані в єдиній та зручній формі симетричної матричної залежності, що дає змогу побудувати єдиний ефективний алгоритм на базі операцій матричної алгебри. Зокрема, дозволяє розглядати практичні задачі обчислення НДС в конструкціях змінної структури, що складаються з окремих частин пов’язаних односторонніми зв’язками. Основна ціль даної роботи в аналізі поведінки алгоритму при збільшенні кількості обмежень типу нерівності, уточненні обчислювальної схеми, формулюванні висновків. В якості прикладів роботи алгоритму розглянуті дві модельні задачі. Це класична “транспортна” задача ЛП та поведінка моделі мостової споруди з односторонніми зв’язками у вантах при варіаціях вітрових навантажень. Кількість вант збільшена до 20 а обмежень нерівностей до 40.