Корекція норми кватерніона орієнтації в алгоритмах бінс: розрахункові схеми нормування і їх ефективність
DOI:
https://doi.org/10.20998/2078-9130.2023.1.284852Анотація
Розглядається задача корекції норми обчисленого кватерніона орієнтації в алгоритмах функціонування безплатформених інерціальних навігаційних систем. Розглянуто два існуючих підходи до процесу корекції, перший підхід полягає в нормуванні кватерніона повороту на такті обчислень, другий підхід полягає в нормуванні результуючого кватерніона. Приведено 5 відомих розрахункових схем корекції норми. Для моделювання тестового руху в роботі застосовано аналітичну кватерніонну кінематичну модель обертання, основану на послідовності трьох поворотів, що відповідають кутам Крилова. Розглянуто випадок лінійної залежності кутів елементарних поворотів від часу. Модель забезпечує отримання в аналітичному вигляді проекцій вектора кутової швидкості твердого тіла на зв’язані осі і відповідних квазікоординат на такті обчислень. Результати чисельного моделювання еталонного руху для заданого набору частот представлені у вигляді залежностей проекцій вектора кутової швидкості твердого тіла від часу і побудованих траєкторії в конфігураційному просторі параметрів орієнтації.
Для визначення кватерніона повороту на такті використано алгоритм Міллера, який дозволяє отримати приріст вектора орієнтації на основі ідеальної інформації з датчиків кутової швидкості у вигляді квазікоординат. Перетворення до кватерніона повороту відбувається за допомогою відповідних розкладень тригонометричних функцій кута істинного повороту (модуля вектора орієнтації) в ряд.
На основі програмно-чисельного експерименту показано, що найкращий результат корекції норми обчисленого кватерніона в сенсі мінімальної похибки норми дає одна із схем фінітного нормування, для якої відсутня операція ділення і яка забезпечує стійкість в часі процесу корекції норми. Приводяться результати чисельного моделювання модельного обертального руху твердого тіла і відпрацювання схем корекції норми обчисленого кватерніона орієнтації.
Ключові слова: кватерніон орієнтації, алгоритм орієнтації Міллера, БІНС, похибка норми, обчислювальний дрейф, аналітична еталонна модель, квазікоординати, чисельне моделювання.