Dangerous bifurcations in 2-dof vibroimpact system

V. A. BAZHENOV, O. S. Pogorelova, T. G. Postnikova

Анотація


Dynamic behaviour of strongly nonlinear non-smooth discontinuous vibroimpact system is studied. Under variation of system parameters we find the discontinuous bifurcations that are the dangerous ones. It is phenomenon unique to non-smooth systems with discontinuous right-hand side. We investigate the 2-DOF vibroimpact system by numerical parameter continuation method in conjunction with shooting and Newton-Raphson methods. We simulate the impact by nonlinear contact interactive force according to Hertz’s contact law. We find the discontinuous bifurcations by Floquet multipliers values. At such points set-valued Floquet multipliers cross the unit circle by jump that is their moduli becoming more than unit by jump. We also learn the bifurcation picture change when the impact between system bodies became the soft one due the change of system parameters. This paper is the continuation of the previous works.

Повний текст:

PDF (English)

Посилання


Jeffrey Mike R., et al. Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Physical Review E 81.1 (2010): 016213.

Grebogi Celso, Edward Ott, James A. Yorke Critical exponent of chaotic transients in nonlinear dynamical systems. Physical review letters 57.11 (1986): 1284.

Thompson J. M. T., Stewart H. B., Ueda Y. Safe, explosive, and dangerous bifurcations in dissipative dynamical systems. Physical Review E 49.2 (1994): 1019.

Fejgin M. I. Projavlenie jeffektov bifurkacionnoj pamjati v povedenii dinamicheskoj sistemy. Sorosovskij obrazovatel'nyj zhurnal, 2001, no 3, pp. 121-127.

Castrigiano D. P. L., Hayes S. A. Hayes. Catastrophe theory. Westview Pr, 2004.

Arnol’d V. I. Catastrophe theory. Springer Science & Business Media, 2003.

Arnol’d V. I. et al. Dynamical systems. V: bifurcation theory and catastrophe theory. Vol. 5. Springer Science & Business Media, 2013.

Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V. Showcase of blue sky catastrophes. International Journal of Bifurcation and Chaos 24.08 (2014): 1440003.

Bazhenov V. A., et al. Stability and Bifurcations Analysis for 2-DOF Vibroimpact System by Parameter Continuation Method. Part I: Loading Curves. Journal of Applied Nonlinear Dynamics 4.4 (2015). pp. 357-370.

Bazhenov V. A., et al. Numerical Bifurcation Analysis of Discontinuous 2-DOF Vibroimpact System. Part 2: Frequency-Amplitude response. Journal of Applied Nonlinear Dynamics 5.3 (2016). pp. 269-281.

Bazhenov V. A., Pogorelova O. S., Postnikova T. G. Contact impact forces at discontinuous 2-DOF vibroimpact. Applied Mathematics and Nonlinear Sciences, 2016, vol. 1, no 1, pp. 183-196.

Allgower E. L., Georg K. Introduction to numerical continuation methods. Vol. 45, SIAM, 2003.

Nayfeh A. H., Balachandran B. Applied nonlinear dynamics: analytical, computational and experimental methods. John Wiley & Sons, 2008.

Bazhenov V. A., Pogorelova O. S., Postnikova T. G. Comparison of two impact simulation methods used for nonlinear vibroimpact systems with rigid and soft impacts. Journal of Nonlinear Dynamics, 2013.

Bazhenov V. A. et al. Comparative analysis of modeling methods for studying contact interaction in vibroimpact systems. Strength of materials 41.4 (2009), pp. 392-398.

Goldsmith W. Impact. Courier Corporation, 2001.

Johnson K. L. Contact mechanics, 1985. (1974), pp. 57-63.

Ivanov A. P. Analysis of discontinuous bifurcations in nonsmooth dynamical systems. Regular and Chaotic Dynamics 17.3-4 (2012), pp. 293-306.

Leine R. I., Van Campen D. H., Van de Vrande B. L. Bifurcations in nonlinear discontinuous systems. Nonlinear dynamics 23.2 (2000). pp. 105-164.

Lamarque C. H., Janin O. Modal analysis of mechanical systems with impact non-linearities: limitations to a modal superposition. Journal of Sound and Vibration 235.4 (2000), pp. 567-609.

Zakrzhevsky, M., Schukin, I., Yevstignejev, V. Rare attractors in driven nonlinear systems with several degrees of freedom. Transport & Engineering 24 (2007).

Blazejczyk-Okolewska B., Czolczynski K., Kapitaniak T. Classification principles of types of mechanical systems with impacts–fundamental assumptions and rules. European Journal of Mechanics-A/Solids23.3 (2004), pp. 517-537.

Andreaus, U., Casini, P. Dynamics of SDOF oscillators with hysteretic motion-limiting stop. Nonlinear Dynamics 22.2 (2000), pp. 145-164.

Bazhenov V. A., Pogorelova O. S., Postnikova T. G. Change of impact kind in vibroimpact system due its parameters changing. MATEC Web of Conferences, vol. 16. EDP Sciences, 2014.

Bazhenov, V. A., Pogorelova O. S., Postnikova T. G. Influence of system stiffness parameters at contact softness in vibroimpact system. Opir materialiv ta teoriya sporud 92 (2014), pp. 65-77.


Пристатейна бібліографія ГОСТ






DOI: https://doi.org/10.20998/2078-9130.2016.26.82732

Посилання

  • Поки немає зовнішніх посилань.