Огляд сучасних моделей розвитку корозійних пошкоджень та напрямів дослідження їх впливу на міцність і надійність елементів трубопровідних систем
Ключові слова:
магістральний трубопровід, корозія, пошкодження, надійність, корозійний дефектАнотація
У даній роботі приводиться огляд сучасного стану досліджень в області корозійно пошкоджених трубопроводів. Розглядаються підходи для аналізу міцності та надійності магістральних трубопроводів з дефектами. Виділено два основних напрямки до дослідження даних конструкцій: це підходи в яких аналіз надійності проводиться на основі оцінки зміни фізико-механічних властивостей матеріалу, та ті, в яких за допомогою сучасних програмних комплексів з використанням методу скінченних елементів проводиться явне моделювання пошкоджених трубопроводів тавизначається напружено-деформований стан та залишковий ресурс конструкції.Посилання
Chebakov M., Dumitrescu A., Lambrescu I., Nedin R. On a method of reduction of stress concentrators in damaged transmission pipelines. Innvative solutions in repair of gas and oil pipelines, Bulgarian Society for destructive testing Publishers, BAS, Sofia. 2016. pp. 229–234.
Adib-Ramezani H., Jeong J., Pluvinage G. Structural integrity evaluation of x52 gas pipes subjected to external corrosion defects using the SINTAP procedure. Int. J. of Pres. Ves. and Pip. 2006. Vol. 83. pp. 420-432.
Valor A., Caleyo F., Hallen J. M., Velazquez J. C. Reliability assessment of buried pipelines based on different corrosion rate models. Corrosion Science. 2013. Vol. 66. pp. 78-87.
Zhang S., Zhou W., Qin H. Inverse gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data. Corrosion Science. 2013. Vol. 73. pp. 309-320.
Alexander F., Basin V., Beck A. T. Stochastic process corrosion growth models for pipeline reliability. Corrosion Science. 2013. Vol. 74. pp. 50-58.
Syrotyk А. М., Barna R. А., Biliy О. L. Assessment of serviceability and fracture risk of defective pipeline of heat-and-power equipment. Mizhvuz. Zbirnyk Naykovi notayky, 2014. No 47. pp. 182–187.
Caleyo F., Velazquez J. C., Valor A., Hallen J. M. Probability distribution of pitting corrosion depthandrate in underg round pipelines: a montecarlo study. Corrosion Science. 2009. Vol. 51, No. 9. pp. 1925–1934.
Stepanova О.V., Galkevich V.І., Gydz V.І. Analysis of corrosion safety of gas pipelines in Poltava region. Visnik PDAA, 2013. No 2. pp. 132-135.
Zhdek А. Ya., Gruz V.Ya. Determination of residual life long oil pipeline operated by subject available corrosion defects and conditions fuse. Naukoviy visnik IFNTUNG, 2013. No 2 (32). pp. 132-135.
Poberegniy L. Corrosion monitoring transit pipelines. Visnyk TNTU, 2011. Vol.16, No 3. pp. 20-26.
Morachkovskiy О. К., Romashov Yu. V. Continual grow the model crack corrosion cracking for resource calculation of structures. Physicochemical Mechanics of Materials. 2011. No 2. pp. 111-116.
Lujeckiy V.S., Lepak О.М. Determination of cyclic corrosion crack pipe material pipeline. Problems numerical mechanics and strengths of design. 2012. pp. 126-131.
Ma B., Shuai J., Liu D., Xu K. Assessment on failure pressure of high strength pipeline with corrosion defects. Engineering Failure Analysis. 2013. Vol. 32. pp. 209–219.
Li X., Bai Y., Su C., Li M. Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline. International Journal of Pressure Vessels and Piping. 2016.
Han Y.-L., Shen S.-M., Dai S.-H. Artificial neural network technology as a method to evaluate the failure bending moment of a pipe with a circumferential crack. Int. J. of Pres. Ves. and Pip. 1996. Vol. 0161, No. 95. pp. 1–6.
Fekete G., Varga L. The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines. Engineering Failure Analysis. 2012. Vol. 21. pp. 21-30.
Silva R. C. C., Guerreiro J. N. C., Loula A. F. D. A study of pipe interacting corrosion defects using the fem and neural networks. Advances in Engineering Software. 2007. Vol. 38. P. 868-875.
Al-Owaisi S.S., Becker A.A., Sun W. Analysis of shape and location effects of closely spaced metal loss defects in pressurised pipes. EFA. 2016. pp. 22/
Bedairi B., Cronin D., Hosseini A., Plumtree A. Failure prediction for crack-in-corrosion defects in natural gas transmission pipelines. Int. J. of Pres. Ves. and Pip. 2012. Vol. 96-97. pp. 90-99.
Chen Y., Zhang H., Zhang J. [et al.] Failure assessment of x80 pipeline with interacting corrosion defects. Engineering failure analysis. 2015. Vol. 47. pp. 67-76.
Filho J. E. A., Machado R. D., Bertin R. J., Valentini M. D. On the failure pressure of pipelines containing wall reduction and isolated pit corrosion defects. Computers and Structures. 2014. Vol. 132. pp. 22-33.
Khalajestani M. K., Bahaari M. R. Investigation of pressurized elbows containing interacting corrosion defects. Int. J. of Pres. Ves. and Pip. 2014. Vol. 123-124. pp. 77-85.
Li X., Bai Y., Su C., Li M. Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline. International Journal of Pressure Vessels and Piping. 2016.
Netto T. A., Ferraz U. S., Botto A. On the effect of corrosion defects on the collapse pressure of pipelines. Int. J. of Sol. & Str. 2007. Vol. 44. P. 7597-7614.
Xu L. Y., Cheng Y. F. International journal of pressure vessels and piping reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain. Int. J. of Pres. Ves. and Pip. 2012. Vol. 89.
Loginov О.А., Moiseyko А.Н. Modeling stress strain state of pipeline section with crack-likedefect. Ves. Sam. gos.tech. unt. Ser.: Phiz.-mat. nauk. 2008. No 1 (16). pp. 164-166.
Pichugin S.F., Semko О.V., Beskrovna J.Yu. The influence of corrosion damage on the mode of deformation of steel pipe main pipeline by finite element simulations. Zbirnyk naukovych prac. PoltNTU, 2013. V. 4 (39).Vol. 1. P. 209-215.
Vasilev I., Mirchev Y., Mihovski M., Sergienko M. Сalculations of the admissible corrosion damages in piping by FEM. «NDT days 2014»/» Днина без разрушителния контрол 2014». 2014. No 1 (150). pp. 506-509.
Demidov P. N., Trubaev А.I. Forecasting of residual life pipelines with erosion-corrosion wear. Visnyk NTY «KhPІ». 2011. No 52. С. 209-215.
Cunha D. J. S., Benjamin A. C., Silva R. C. C. [et al.] International journal of pressure vessels and piping fatigue analysis of corroded pipelines subjected to pressure and temperature loadings. Int. J. of Pres. Ves. and Pip. 2014. Vol. 113. pp. 15-24.
Caleyo F., Velazquez J. C., Valor A., Hallen J. M. Probability distribution of pitting corrosion depth and rate in underground pipelines: a montecarlo study. Corrosion Science. 2009. Vol. 51, No. 9. pp. 1925-1934.
De Leon D., Maci O. F. Effect of spatial correlation on the failure probability of pipelines under corrosion. Int. J. of Pres. Ves. and Pip. 2005. Vol. 82. pp. 123–128.
Li S., Yu S., Zeng H. [et al.] Journal of petroleum science and engineering predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic model. Journal of Petroleum Science and Engineering. 2009. Vol. 65, No. 3-4. P. 162-166.
Meliani M. H., Matvienko Y. G., Pluvinage G. Corrosion defect assessment on pipes using limit analysis and notch fracture mechanics q. Engineering Failure Analysis. 2011. Vol. 18, No. 1. P. 271-283.
Qian G., Niffenegger M., Li S. Probabilistic analysis of pipelines with corrosion defects by using fitnetffs procedure. Corrosion Science. 2011. Vol. 53, No. 3. pp. 855-861.
Teixeira A. P., Soares C. G., Netto T. A., Estefen S. F. Reliability of pipelines with corrosion defects. Int. J. of Pres. Ves. and Pip. 2008. Vol. 85. pp. 228-237.
Larin О., Barkanov Е., Vodka О. Prediction of reliability of the corroded pipeline considering the randomness of corrosion damage and its stochastic growth. Engineering Failure Analysis. 2016. Vol. 66. pp. 60-71.
Witek M. Gas transmission pipeline failure probability estimation and defect repairs activities based on in-line inspection data. EFA. 2016. Vol. 70. pp. 255-272.
Vodka O. Computation tool for assessing the probability characteristics of the stress state of the pipeline part defected by pitting corrosion. Advances in Engineering Software. 2015. Vol. 90. pp. 159-168.
Veritas D. N. Recommended practice DNV RP F101. Corroded pipelines october 2010. Int. J. of Pres. Ves. and Pip. 2010. pp. 42.