Учебник для студентов энергетических и электротехнических ВУЗов. – М.: Высшая школа, 1973. – 752 с. 9. К. Шимони Теоретическая электротехника. – М.: Мир, 1964. – 773 с. 10. Jn. Volakis, A. Chatterjee, L. Kempel, Finite element method for electromagnetics. – IEEE Press, 1956. – 344 р. 11. П. Сильвестер, Р.Феррари Метод конечных элементов для радиоинженеров и инженеров-электриков. – М.: Мир, 1986. – 229 с. 12. J.Coulomb and G. Meunier, Finite Element Implementation of Virtual Work Principle for Magnetic for Electric Force and Torque Calculation / IEEE Transactions on Magnetics, 1984. – Vol. Mag-2D, № 5. – Р. 1894-1896. 13. Кузнецов В.А., Ялунина Г.В. Метрология (теоретические, прикладные и законодательные основы): Учеб. Пособие. – М.: ИПК Издательство стандартов, 1998. - 336 с. 14. Jn. Crawford, Interpreting Your Analysis Results: Spend time reviewing the answers to understand what they really mean / ANSYS Solutions. – Spring 2004. – Р. 36-38. 15. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. – М.: Наука, 1978. – 831 с. 16. Вибрации в технике: Справочник. В 6-ти т. / Ред. В.Н.Челомей (пред). – М.: Машиностроение, 1979. – Т.2: Колебания нелинейных механических систем. / Под ред. И.И.Блехмана. – 351 с.

Поступила в редколлегию 14.09.2007

УДК 534-16: 534.015

Ю.В.МИХЛИН, докт.физ.-мат.наук; *Г.В.РУДНЕВА*, канд.физ.-мат.наук; *Т.В.БУНАКОВА*; НТУ «ХПИ»

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В СИСТЕМАХ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ, СОДЕРЖАЩИХ СУЩЕСТВЕННО НЕЛИНЕЙНЫЙ ГАСИТЕЛЬ

Розглядається перехідний процес у системі, що містить лінійний осцилятор і приєднаний істотно нелінійний елемент із відносно невеликою масою. Враховано тертя. Метод багатьох масштабів використаний для опису перехідного процесу в розглянутій системі. Спостерігається перекачування енергії зі початково-збудженої лінійної системи в нелінійний гаситель. Подібне дослідження проведене й для системи, що містить лінійний осцилятор і вібро-ударний гаситель з відносно малою масою. Розглянутий також перехідний процес у такій системі під дією зовнішнього періодичного збудження. Чисельне моделювання підтверджує ефективність аналітичних побудов в обох системах.

Transient in a system containing a linear oscillator, linearly coupled to an essentially nonlinear attachment with a comparatively small mass, is considered. A damping is taken into account. The multiple scales method is used to construct a process of transient in the system under consideration. A transfer of energy from the initially perturbed linear subsystem to the nonlinear absorber can be observed. A similar construction is made to describe the transient in a system which contains a linear oscillator and a vibro-impact attachment with a comparatively small mass. A transient in such system under the external periodical excitation was considered too. Numerical simulation confirms an efficiency of the analytical construction in both systems.

1. Введение. Исследование переходного процесса играет важную роль в инженерии, в частности, в проблемах гашения. За последние несколько лет различные новые устройства применялись для гашения механических коле-

баний [1-4 и др.]. Интересным является использование для этих целей нелинейных пассивных гасителей.

В данной работе рассмотрен переходный процесс в системе, содержащей линейный осциллятор, связанный линейной пружиной с существенно нелинейным гасителем сравнительно малой массы. При этом учитывается трение в системе и предполагается, что линейная система подвергается некоторому начальному возмущению.

Для построения переходного процесса в рассматриваемой системе использовался метод многих масштабов [5 и др.]. Наблюдалась перекачка энергии из изначально возмущенной линейной системы в нелинейный гаситель.

Подобное исследование было проведено и для системы, содержащей линейный осциллятор и вибро-ударный гаситель сравнительно малой массы. При этом были использованы как метод многих масштабов, так и непосредственное интегрирование уравнений системы с учетом условий удара. Рассмотрен также переходный процесс в системе, подверженной внешнему периодическому возбуждению. Численное моделирование подтверждает эффективность аналитических построений в обеих системах.

2. Переходный процесс в системе с существенно нелинейным гасителем. Рассмотрим систему двух связанных осцилляторов, а именно линейного и нелинейного со сравнительно малой массой (рис. 1).

Данная система может быть описана следующей системой обыкновенных дифференциальных уравнений

$$\begin{cases} \varepsilon m \ddot{x} + \varepsilon c x^3 + \varepsilon^2 \delta \dot{x} + \varepsilon \gamma (x - y) = 0, \\ M \ddot{y} + \omega^2 y + \varepsilon^2 \delta \dot{y} + \varepsilon \gamma (y - x) = 0, \end{cases}$$
(1)

где є – это малый параметр.

Решение системы (1) найдем методом многих масштабов. При этом используются следующие разложения:

$$x = x_0(t_0, t_1, t_2, ...) + \varepsilon x_1(t_0, t_1, t_2, ...) + \varepsilon^2 x_2(t_0, t_1, t_2, ...) + ...,$$

$$y = y_0(t_0, t_1, t_2, ...) + \varepsilon y_1(t_0, t_1, t_2, ...) + \varepsilon^2 y_2(t_0, t_1, t_2, ...) + ...,$$
(2)

где

$$t_0 = t, t_1 = \varepsilon t, t_2 = \varepsilon^2 t, \dots, t_n = \varepsilon^n t, \dots, \quad \frac{d}{dt} = \frac{\partial}{\partial t_0} \frac{dt_0}{dt} + \frac{\partial}{\partial t_1} \frac{dt_1}{dt} + \frac{\partial}{\partial t_2} \frac{dt_2}{dt} + \dots =$$
$$= \frac{\partial}{\partial t_0} + \varepsilon \frac{\partial}{\partial t_1} + \varepsilon^2 \frac{\partial}{\partial t_2} + \varepsilon^3 \frac{\partial}{\partial t_3} + \dots = D_0 + \varepsilon D_1 + \varepsilon^2 D_2 + \varepsilon^3 D_3 + \dots \text{ M T.A.}$$

Для нахождения нулевого приближения по малому параметру выпишем соответствующее уравнение:

$$\varepsilon^0: MD_0^2 y_0 + \omega^2 y_0 = 0$$

Решением этого уравнения является функция

$$y_0 = A_1(t_1, t_2, ...) \cos \Psi_0$$
,

где $\Psi_0 = \Omega t_0 + \varphi_0(t_1, t_2, ...), \ \Omega^2 = \frac{\omega^2}{M}$.

Для определения следующего приближения по малому параметру получаем уравнения:

$$\varepsilon^{1} : \begin{cases} mD_{0}^{2}x_{0} + cx_{0}^{3} + \gamma(x_{0} - y_{0}) = 0, \\ MD_{0}^{2}y_{1} + 2MD_{0}D_{1}y_{0} + \omega^{2}y_{1} + \gamma(y_{0} - x_{0}) = 0 \end{cases}$$

Уравнение для определения *x*₀ здесь является нелинейным. Его решение принимается в виде следующей аппроксимации:

$$x_0 = B_1(t_1, t_2, ...) \cos \psi_0 + B_2(t_1, t_2, ...) \cos \psi_1$$

где $\Psi_1 = \overline{\Omega}(t_1, t_2, ...)t_0 + \varphi_1(t_1, t_2, ...)$.

Приравнивая коэффициенты при косинусах в первом уравнении и исключая секулярные члены во втором, получим такие нелинейные функциональные уравнения вида:

$$\begin{cases} -mB_1\Omega^2 + c\left(\frac{3}{4}B_1^3 + \frac{3}{2}B_1B_2^2\right) + \gamma B_1 = \gamma A_1; \\ \gamma - m\overline{\Omega}^2 + \frac{3}{4}cB_2^2 + \frac{3}{2}cB_1^2 = 0; \end{cases}, \begin{cases} 2MA_1\Omega\frac{\partial\varphi_0}{\partial t_1} + \gamma B_1 - \gamma A_1 = 0; \\ \frac{\partial A_1}{\partial t_1} = 0. \end{cases}$$

Таким образом,

$$A_{1} = A_{1}(t_{2}, t_{3}, \dots); \ \frac{\partial \varphi_{0}}{\partial t_{1}} = \frac{\gamma (A_{1} - B_{1})}{2MA_{1}\Omega}$$

Пропуская в изложении определение решений следующих приближений, приведем окончательные выражения для амплитуд, частот и фаз нулевого приближения x_0 , y_0 из разложений (2):

$$B_{2} = \overline{c}(t_{2}, t_{3}, \dots) e^{-\frac{\delta}{2m}t_{1}}; B_{1} = c_{0}(t_{2}, t_{3}, \dots) + c_{2}(t_{2}, t_{3}, \dots) e^{-\frac{\delta}{m}t_{1}};$$
$$A_{1} = \frac{\gamma - m\Omega^{2}}{\gamma}c_{0} + \frac{3}{4\gamma}cc_{0}^{3}, \ \overline{\Omega}^{2} = \frac{1}{m}\left(\gamma + \frac{3}{4}cB_{2}^{2} + \frac{3}{2}cB_{1}^{2}\right) =$$

=[после усреднения по времени] =
$$\frac{1}{m} \left(\gamma + \frac{3}{2} c c_0^2 \right)$$
;

$$\varphi_{0} = \frac{\gamma}{2M\Omega} t_{1} - \frac{\gamma}{2M\Omega A_{1}} \left(c_{0}t_{1} - c_{2} \frac{m}{\delta} e^{-\frac{\delta}{m}t_{1}} \right) + c_{2}^{*}, \text{ где } c_{2} = \frac{\frac{3}{2}c\overline{c}^{2}c_{0}}{m\Omega^{2} - \gamma - \frac{9}{4}cc_{0}^{2}}.$$

Итак, получено нулевое приближение искомого решения, содержащее четыре функции, которые превращаются в постоянные, если не учитывать временные масштабы высших порядков:

$$c_1^* = c_1^*(t_3, t_4, \dots), c_2^* = c_2^*(t_2, t_3, \dots), c_3^* = c_3^*(t_2, t_3, \dots), \overline{c} = \overline{c}(t_2, t_3, \dots)$$

Эти постоянные могут быть найдены численно с помощью метода Ньютона из начальных условий системы:

$$x(0) = \dot{x}(0) = 0$$
; $y(0) = 0, \dot{y}(0) = V$

Рис. 2 и 3 представляют результаты сравнения численного решения системы, найденного методом Рунге-Кутта, и аналитического решения (нулевого приближения) для разных начальных условий. Можно обнаружить хорошее совпадение аналитических и численных решений для относительно большого времени расчета.

3. Переходный процесс в вибро-ударной системе. Рассмотрим вибро-ударную систему с двумя степенями свободы с односторонним ограничителем (рис. 4). Эта система содержит линейный осциллятор и гаситель сравнительно малой массы. Предполагается получить аналитическое описание переходных процессов как для свободных, так и для вынужденных колебаний. Для этого, как и в предыдущей задаче, используем метод многих масштабов.

Уравнения свободных колебаний рассматриваемой системы имеют сле-

дующий вид:

$$\begin{cases} \varepsilon m \ddot{x} + \varepsilon \gamma (x - y) + \varepsilon^2 \delta \dot{x} = 0; \\ M \ddot{y} + c^2 y + \varepsilon \gamma (y - x) + \varepsilon^2 \delta \dot{y} = 0, \end{cases}$$
(3)

где M – масса главной линейной системы; m – масса гасителя; δ характеризует линейную силу трения, γ и c^2 – коэффициенты упругости пружин. Малый параметр ($\varepsilon << 1$) введен для того, чтоб показать малость массы гасителя, а также диссипации и связи между осцилляторами.

Рисунок 4 – Рассматриваемая виброударная система

Предполагается, что удар в системе происходит мгновенно. Коэффициент восстановления e ($0 \le e \le 1$) характеризует потери скорости в момент удара. Таким образом, мы имеем следующие условия удара:

 $x(t_k^+) = x(t_k^-) = x_{\max}; \ \dot{x}(t_k^+) = -e\dot{x}(t_k^-); \ y(t_k^+) = y(t_k^-); \ \dot{y}(t_k^+) = \dot{y}(t_k^-).$ (4)

Здесь t_k – момент удара (k – номер удара), t_k^- – момент перед ударом, t_k^+ – момент после удара, x_{max} – расстояние между положением равновесия и ограничителем.

3.1. Свободные колебания вибро-ударной системы. Для построения аналитического решения методом многих масштабов используем выражения (2). В нулевом приближении решения по параметру получим:

$$y_{0} = A_{0}(t_{1}, t_{2}, t_{3},...)\cos\Omega t_{0} + B_{0}(t_{1}, t_{2}, t_{3},...)\sin\Omega t_{0};$$

$$x_{0} = \beta(A_{0}(t_{1},...)\cos\Omega t_{0} + B_{0}(t_{1},...)\sin\Omega t_{0}) +$$

$$+ A_{1}(t_{1},...)\cos\sqrt{\gamma/m}t_{0} + B_{1}(t_{1},...)\sin\sqrt{\gamma/m}t_{0},$$
(5)
где $\Omega_{0}^{2} = c^{2}/M$, $\beta = \frac{\gamma}{m(\gamma/m - \Omega_{0}^{2})}.$

Из условия исключения секулярных членов в следующем приближении по малому параметру получим следующие выражения для амплитуд нулевого приближения:

$$A_0 = -C_1 \sin \Omega_1 t_1 + C_2 \cos \Omega_1 t_1;$$
 $B_0 = C_1 \cos \Omega_1 t_1 + C_2 \sin \Omega_1 t_1,$
где $\Omega_1 = \frac{\gamma(\beta - 1)}{2M\Omega_0}.$

Учитывая следующее приближение, получим приближенное решение в виде:

$$x = \beta(\cos\Omega_2 t \cdot (-R_1C_1 + R_2C_2) + \sin\Omega_2 t \cdot (R_2C_1 + R_1C_2)) + e^{\alpha\varepsilon t} \{C_3 \sin\beta_3 t + C_4 \cos\beta_3 t\},\$$

$$y = C_1 \sin\Omega_2 t + C_2 \cos\Omega_2 t + \varepsilon\beta_1 e^{\alpha\varepsilon t} \{C_3 \sin\beta_3 t + C_4 \cos\beta_3 t\},\$$

где

$$R_1 = \frac{\varepsilon \delta \Omega}{m \left(\gamma/m - \Omega^2 \right)}; \quad R_2 = 1 - \frac{2\varepsilon \Omega \Omega_1}{\gamma/m - \Omega^2}; \quad \beta_3 = \sqrt{\gamma/m} - \beta_2 \varepsilon; \quad \Omega_2 = \Omega - \varepsilon \Omega_1.$$

Из условий удара (4) получим связь между коэффициентами C_i до (C_i^k) и после (C_i^{k+1}) удара:

$$\begin{split} &\beta(\cos\Omega_{2}t\cdot(-R_{1}C_{1}^{k+1}+R_{2}C_{2}^{k+1})+\sin\Omega_{2}t\cdot(R_{2}C_{1}^{k+1}+R_{1}C_{2}^{k+1}))+\\ &+e^{\alpha\varepsilon t}\left\{C_{3}^{k+1}\sin\beta_{3}t+C_{4}^{k+1}\cos\beta_{3}t\right\}=\beta(\cos\Omega_{2}t\cdot(-R_{1}C_{1}^{k}+R_{2}C_{2}^{k})+\\ &+\sin\Omega_{2}t\cdot(R_{2}C_{1}^{k}+R_{1}C_{2}^{k}))+e^{\alpha\varepsilon t}\left\{C_{3}^{k}\sin\beta_{3}t+C_{4}^{k}\cos\beta_{3}t\right\};\\ &\Omega_{2}\beta\left(-\sin\Omega_{2}t\cdot(-R_{1}C_{1}^{k+1}+R_{2}C_{2}^{k+1})+\cos\Omega_{2}t\cdot(R_{2}C_{1}^{k+1}+R_{1}C_{2}^{k+1})\right)+\\ &+e^{\alpha\varepsilon t}\left(\alpha\varepsilon\left\{C_{3}^{k+1}\sin\beta_{3}t+C_{4}^{k+1}\cos\beta_{3}t\right\}+\beta_{3}\left\{C_{3}^{k+1}\cos\beta_{3}t-C_{4}^{k+1}\sin\beta_{3}t\right\}\right)=\\ &=-e\Omega_{2}\beta\left(-\sin\Omega_{2}t\cdot(-R_{1}C_{1}^{k}+R_{2}C_{2}^{k})+\cos\Omega_{2}t\cdot(R_{2}C_{1}^{k}+R_{1}C_{2}^{k})\right)+\\ &+e^{\alpha\varepsilon t}\left(\alpha\varepsilon\left\{C_{3}^{k}\sin\beta_{3}t+C_{4}^{k}\cos\beta_{3}t\right\}+\beta_{3}\left\{C_{3}^{k}\cos\beta_{3}t-C_{4}^{k}\sin\beta_{3}t\right\}\right);\\ &C_{1}^{k+1}\sin\Omega_{2}t+C_{2}^{k+1}\cos\Omega_{2}t+\varepsilon\beta_{1}e^{\alpha\varepsilon t}\left\{C_{3}^{k+1}\sin\beta_{3}t+C_{4}^{k+1}\cos\beta_{3}t\right\}=\\ &=C_{1}^{k}\sin\Omega_{2}t+C_{2}^{k}\cos\Omega_{2}t+\varepsilon\beta_{1}e^{\alpha\varepsilon t}\left\{C_{3}^{k}\sin\beta_{3}t+C_{4}^{k}\cos\beta_{3}t\right\};\\ &\Omega_{2}\left(C_{1}^{k+1}\cos\Omega_{2}t-C_{2}^{k+1}\sin\Omega_{2}t\right)+\varepsilon\beta_{1}e^{\alpha\varepsilon t}\left\{\alpha\varepsilon\left(C_{3}^{k+1}\sin\beta_{3}t+C_{4}^{k+1}\cos\beta_{3}t\right)\right\}. \end{split}$$

$$+\beta_{3}\left(C_{3}^{k+1}\cos\beta_{3}t-C_{4}^{k+1}\sin\beta_{3}t\right)\}=$$

= $\Omega_{2}\left(C_{1}^{k}\cos\Omega_{2}t-C_{2}^{k}\sin\Omega_{2}t\right)+\epsilon\beta_{1}e^{\alpha\varepsilon t}\left\{\alpha\varepsilon\left(C_{3}^{k}\sin\beta_{3}t+C_{4}^{k}\cos\beta_{3}t\right)+\beta_{3}\left(C_{3}^{k}\cos\beta_{3}t-C_{4}^{k}\sin\beta_{3}t\right)\right\}.$

Численное исследование было проведено для следующих значений параметров: M = 1; m = 1; $\varepsilon = 0,01$; $\delta = 10$; e = 0,9; $x_{max} = 1,4$; $\gamma = 1,5$; c = 1.

При этом выбирались такие начальные условия для линейной системы: $x(0) = 0; \dot{x}(0) = 0; y(0) = 0; \dot{y}(0) = \dot{V}_0 = 1$.

Сравнение аналитического и численного решений показало хорошую точность аналитического приближения (рис. 5). Численное исследование свободных и вынужденных колебаний (следующий пункт) было реализовано методом Рунге-Кутта 4-го порядка с переменным шагом в окрестности моментов удара.

Рисунок 5 – Переходный процесс в случае свободных колебаний вибро-ударной системы. Удар происходит при x_{max} = 1,4.

3.2. Переходный процесс в случае вынужденных колебаний. Рассмотрим ту же вибро-ударную систему с двумя степенями свободы, но в случае внешнего периодического возбуждения линейного осциллятора.

Метод многих масштабов может быть использован и в этом случае. Но в отличие от решения, полученного в пункте 3.1, в новое решение уже будет добавлено слагаемое, отвечающее внешнему возбуждению. Получим:

$$x = \beta(\cos\Omega_2 t \cdot (-R_1C_1 + R_2C_2) + \sin\Omega_2 t \cdot (R_2C_1 + R_1C_2)) +$$

+ $e^{\alpha\varepsilon t} \{C_3\sin\beta_3 t + C_4\cos\beta_3 t\} + (F_2 + \varepsilon F_5)\cos\varphi t + \varepsilon F_6\sin\varphi t,$
$$y = C_1\sin\Omega_2 t + C_2\cos\Omega_2 t + \varepsilon\beta_1 e^{\alpha\varepsilon t} \{C_3\sin\beta_3 t + C_4\cos\beta_3 t\} +$$

+ $(F_1 + \varepsilon F_3)\cos\varphi t + \varepsilon F_4\sin\varphi t,$ (6)

где

$$F_{1} = \frac{F}{(\Omega^{2} - \varphi^{2})}, \quad F_{2} = \frac{\gamma F_{1}}{m(\gamma/m - \varphi^{2})}, \quad F_{3} = \frac{-\gamma(F_{1} - F_{2})}{M(\Omega^{2} - \varphi^{2})}, \quad F_{4} = \frac{2\varphi F_{1}}{\Omega^{2} - \varphi^{2}},$$
$$F_{5} = \frac{\gamma F_{3}}{m(\gamma/m - \varphi^{2})}, \quad F_{6} = \frac{\frac{\gamma}{m} F_{4} + (2 + \delta/m)F_{2}\varphi}{\gamma/m - \varphi^{2}}.$$

Условия удара (4) как и раньше зададут связи между коэффициентами C_i до (C_i^k) и после (C_i^{k+1}) удара.

Численное исследование было проведено при тех же параметрах, что и в предыдущем пункте. Сравнение полученных численно и аналитически результатов приведено на рис. 6 и демонстрирует хорошую точность полученных аналитических решений.

Колебания линейной подсистемы с большой массой.

Выводы. Результаты представленного здесь анализа показывают эффективность метода многих масштабов для аналитического представления переходных процессов как в системе с существенно нелинейным гасителем, так и в виброударной системе. Численное моделирование подтвердило точность полученных аналитических результатов. Заметим, что в результате переходного процесса каждая рассматриваемая система входит в режим некоторой устойчивой формы стационарных колебаний.

Список литературы: 1. Shaw J., Shaw S., Haddow A.J. On the response of the non-linear vibration absorber // Int. Journal of Nonlinear Mechanics. – Vol. 24. – 1989. – Р. 281-293. 2. Вибрации в технике. Под ред. Фролова К.В. – Москва: Машиностроение, 1995. 3. Cuvalci O., Ertas A. Pendulum as vibration absorber for flexible structures: experiments and theory // Trans. of the ASME. J. of Vibr. Acoustics. – Vol. 118. – 1996. – Р. 558-566. 4. Manevitch L., Gendelman O., Musienko A.I., Vakakis A.F., Bergman L.A. Dynamic interaction of a semi-infinite linear chain of coupled oscillators with a strongly nonlinear end attachment // Physica D. – Vol. 178. – 2003. – P. 1-18. 5. Nayfeh A.H., Mook D. Nonlinear Oscillations. – John Wiley, New York. – 1984.

Поступила в редколлегию 14.11.2007