В.П. ОЛЬШАНСКИЙ, д-р физ.-мат. наук, профессор, ХНТУСХ, Харьков

ОБ ИССЛЕДОВАНИЯХ А.П. ФИЛИППОВА В ТЕОРИИ НЕУПРУГОГО УДАРА

Проведено аналітичний огляд робіт академіка АН УССР А.П. Філіпова, опублікованих в центральних журналах в Москві, а потім перевиданих в його книжках з коливань деформованих систем. Ключові слова: аналітичний огляд, коливання, деформовані системи.

Проведен аналитический обзор работ академика АН УССР А. П. Филиппова, опубликованных в центральных журналах в Москве, а потом переизданных в его книжках по колебаниям деформированных систем.

Ключевые слова: аналитический обзор, колебания, деформированные системы.

A analytical review of the work of Academician AN UkrSSR A.P. Philipova published in central journals in Moscow, and then reissue of his books on the vibrations of deformable systems.

Keywords: analytical review, vibrations, deformable systems.

Введение. Проведенные Анатолием Петровичем исследования в теории неупругого удара относятся к работам начального периода его творчества. Но эти работы были актуальны, выполнены на высоком аналитическом уровне и опубликованы в центральных изданиях СССР. Они вошли в перечень работ, за которые А.П. Филиппов был избран членом-корреспондентом АН УССР и ему была присуждена ученая степень доктора технических наук, без защиты диссертации.

Работы Анатолия Петровича в теории неупругого удара немногочисленны, но они являются составной частью богатого научного наследия, оставленного тем, кто интересуется динамикой деформируемых систем. Чтобы дальше развивать его идеи и методы исследований, нужно знать содержание этих публикаций, что послужило мотивом написания этой статьи.

Не дублируя в деталях его исследований, которые указаны в списке литературы, далее проведем обобщенный анализ этих работ, выделив их особенности и научную значимость.

Прежде всего отметим, что в качестве тел, подверженных удару, он выбирал балки и плиты конечных размеров, закрепленные на опорах, а в отдельных случаях, подкрепленные и упругим основанием Винклера. Эти элементы конструкций распространены в строительстве, машиностроении и других областях техники. Словом, теоретические исследования А.П. Филиппова всегда имели практическую направленность и содействовали техническому прогрессу. Общие соотношения для неупругого удара. В первых публикациях по проблеме удара он решал задачи в постановке Сен-Венана. По Сен-Венану, ударяющее тело сообщает свою скорость элементу конструкции, там где оно вступает в соприкосновение, а затем движется вместе с этим элементом. Такой удар называют неупругим [1]. В указанной постановке А.П. Филиппов решил задачи удара падающего массивного тела по балке, с учетом затухания колебаний, а также удара по прямоугольной и круглой пластинам, подкрепленным упругим основанием [2,3,4].

Общая схема решения задач включает следующие действия. Записывается уравнение движения ударяемого тела (балки или пластины) под действием единичной сосредоточенной силы, в пространстве изображений по Карсону, которому отдано предпочтение вместо преобразования Лапласа. Для двумерного случая такое уравнение имеет вид:

$$D_p G\left(\xi, \eta, \beta^2 p^2\right) = \alpha \delta\left(\xi - \xi_1\right) \delta\left(\eta - \eta_1\right).$$
⁽¹⁾

Здесь D_p – дифференциальный оператор изгиба пластины; p – параметр интегрального преобразования Карсона; ξ , η – безразмерные пространственные переменные; ξ_1 , η_1 – безразмерные координаты точки приложения ударной силы; $\delta(\xi - \xi_1)$, $\delta(\eta - \eta_1)$ – функции Дирака; α – постоянный множитель, зависящий от изгибной жесткости пластины; β – постоянный множитель, зависящий от массы тонкостенного тела.

Решив уравнение (1) и удовлетворив заданным граничным условиям на контуре пластины (или на краях балки), получают выражение функции Грина:

$$\alpha G\left(\xi,\xi_1,\eta,\eta_1,\beta^2 p^2\right). \tag{2}$$

Изображение силы ударного взаимодействия F(p) находят из уравнения вертикального движения падающего груза, записав его в пространстве изображений:

$$F(p) = Mg - Mp^2W + pM\upsilon.$$
⁽³⁾

Здесь M – масса тела, которое с относительной скоростью v ударяет по балке или пластине; g – ускорение свободного падения; W = W(p) – изображение перемещения ударяющего тела.

Согласно (2) и (3) изображение прогиба тела, подвергнутого удару, представляется произведением:

$$Y\left(\xi,\xi_1,\eta,\eta_1,\beta^2 p^2\right) = \alpha M\left(g - p^2 W + p\upsilon\right) G\left(\xi,\xi_1,\eta,\eta_1,\beta^2 p^2\right).$$
(4)

По гипотезе Сен-Венан:

$$W = W(p) = Y\left(\xi_1, \xi_1, \eta_1, \eta_1, \beta^2 p^2\right).$$
 (5)

Поэтому из (4) и (5) следует, что

$$W = \frac{\alpha M (g + pv) G (\xi_1, \xi_1, \eta_1, \eta_1, \beta^2 p^2)}{1 + \alpha M p^2 G (\xi_1, \xi_1, \eta_1, \eta_1, \beta^2 p^2)}.$$
 (6)

Подставив (6) в (4), получаем изображение прогиба тела, подвергнутого удару:

$$Y(\xi,\xi_{1},\eta,\eta_{1},\beta^{2}p^{2}) = \frac{\alpha M(g+p\upsilon)G(\xi,\xi_{1},\eta,\eta_{1},\beta^{2}p^{2})}{1+\alpha M p^{2}G(\xi_{1},\xi_{1},\eta_{1},\eta_{1},\beta^{2}p^{2})}.$$
(7)

Переход от изображения (7) к оригиналу осуществляется с помощью второй теоремы разложения, что приводит к формуле прогибов тонкостенного тела:

$$y(\xi,\xi_{1},\eta,\eta_{1},t) = \alpha M g G(\xi,\xi_{1},\eta,0) + \frac{1}{2} \sum_{K=1}^{\infty} \frac{\alpha M(g+\upsilon p_{K}) G(\xi,\xi_{1},\eta,\eta_{1},\beta^{2} p_{K}^{2})}{\alpha M p_{K}^{4} G_{p_{K}^{2}}^{\prime}(\xi_{1},\xi_{1},\eta_{1},\eta_{1},\beta^{2} p_{K}^{2}) - 1} \cdot e^{p_{K}t}.$$
(8)

Здесь через p_K обозначены корни трансцендентного уравнения:

$$1 + \alpha M p_K^2 G(\xi_1, \xi_1, \eta_1, \eta_1, \beta^2 p_K^2) = 0; \qquad (9)$$

штрих обозначает частную производную $G(\xi_1,\xi_1,\eta_1,\eta_1,\beta^2 p_K^2)$ по p_K^2 ; t – время.

Если ввести обозначение $\beta^2 p_k^2 = -s_k^2$, то уравнение (9) примет вид:

$$s_{K}^{2}G(\xi_{1},\xi_{1},\eta_{1},\eta_{1},-s_{K}^{2}) = \frac{\beta^{2}}{\alpha M}.$$
 (10)

Вместо (8), получаем выражение:

$$y(\xi,\xi_{1},\eta,\eta_{1},t) = y_{CT} - \sum_{K=1}^{\infty} \frac{\alpha M \left(g \cos \frac{s_{K}t}{\beta} - \frac{\upsilon s_{K}}{\beta} \sin \frac{s_{K}t}{\beta}\right)}{\alpha M \beta^{-2} s_{K}^{4} G'_{s_{K}^{2}} \left(\xi_{1},\xi_{1},\eta_{1},\eta_{1},-s_{K}^{2}\right) + 1} \times \\ \times G\left(\xi,\xi_{1},\eta,\eta_{1},-s_{K}^{2}\right).$$
(11)

При записи (11) учли, что $\alpha Mg G(\xi, \xi_1, \eta, \eta_1, 0)$ равно статическому прогибу ударяемого тела y_{CT} под действием веса Mg ударяющего тела.

Формула (11) заметно упрощается, когда $\xi = \xi_1$, $\eta = \eta_1$. В этом частотном случае прогиб пластины под грузом равен:

$$y(\xi_{1},\xi_{1},\eta_{1},\eta_{1},t) = y_{CT} - \sum_{K=1}^{\infty} \frac{\beta^{2} \left(g\cos\frac{s_{K}t}{\beta} - \frac{\upsilon s_{K}}{\beta}\sin\frac{s_{K}t}{\beta}\right)}{s_{K}^{2} \left[\alpha M \beta^{-2} s_{K}^{4} G_{s_{K}^{2}}'\left(\xi_{1},\xi_{1},\eta_{1},\eta_{1},-s_{K}^{2}\right) + 1\right]}.$$
 (12)

Штрих в (11) и (12) означает частную производную функции $G(\xi_1,\xi_1,\eta_1,\eta_1,-s_k^2)$ по s_k^2 .

Конкретизируем общие решения для отдельных тел.

Колебания прямоугольной пластины

1. В случае прямоугольной шарнирно-опертой пластины длиной *a*, шириной *b* и толщиной *h* имеем:

$$\alpha = \frac{4a^{2}\mu}{\pi^{4}D}; \quad \beta^{2} = \frac{a^{4}\rho h}{\pi^{4}D}; \quad \mu = \frac{a}{b}; \quad \gamma^{2} = \frac{ca^{4}}{\pi^{4}D}; \quad D = \frac{Eh^{3}}{12(1-\sigma^{2})}; \quad (13)$$

$$G(\xi,\xi_{1},\eta,\eta_{1},-s^{2}) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin(m\pi\xi)\sin(m\pi\xi_{1})\sin(n\pi\eta)\sin(n\pi\eta_{1})}{(m^{2}+\mu^{2}n^{2})^{2}+\gamma^{2}-s^{2}}.$$

Здесь *E*, σ – модуль упругости и коэффициент Пуассона материала пластины плотности ρ ; *c* – коэффициент постели основания Винклера.

Входящее в (11) отношение $\alpha M \beta^{-2}$ выражается через массы соударяющихся тел по формуле:

$$\alpha M \beta^{-2} = \frac{4\mu M}{\rho h a^2} = \frac{4M}{M_0},$$
(14)

где M_0 – масса пластины.

Поэтому, согласно (10), (11), (13) и (14):

$$y(\xi,\xi_{1},\eta,\eta_{1},t) = y_{CT} - \frac{4a^{2}\mu M}{\pi^{4}D} \sum_{K=1}^{\infty} \frac{g\cos\frac{s_{K}t}{\beta} - \frac{\upsilon s_{K}}{\beta}\sin\frac{s_{K}t}{\beta}}{1 + \frac{4M}{M_{0}}s_{K}^{4}f\left(\xi_{1},\eta_{1},s_{K}^{2}\right)} \times \\ \times G(\xi,\xi_{1},\eta,\eta_{1},-s_{K}^{2}); \ s_{K}^{2}G(\xi_{1},\xi_{1},\eta_{1},\eta_{1},-s_{K}^{2}) = \frac{M_{0}}{4M};$$

$$f(\xi_{1},\eta_{1},s_{K}^{2}) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin^{2}(m\pi\xi_{1})\sin^{2}(n\pi\eta_{1})}{\left[\left(m^{2}+\mu^{2}n^{2}\right)^{2}+\gamma^{2}-s_{K}^{2}\right]^{2}}.$$
(16)

К этим результатам А.П. Филиппов пришел в работе [3]. Для квадратной пластины ($a = b, \mu = 1$) при $\gamma^2 = 100; M_0 M^{-1} = 10, v = 0$ он получил:

$$y\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, t\right)\frac{a^2Mg}{\pi^4 D} = \left\{0, 1231 - 0, 1139 \cdot \left[\cos\frac{24, 29t}{\beta} + 0, 0547\cos\frac{11, 79t}{\beta} + 0, 0173\cos\frac{18, 59t}{\beta} + 0, 0086\cos\frac{24, 29t}{\beta} + \dots\right]\right\}.$$

Коэффициент динамичности K_g по прогибам, равный отношению максимального динамического прогиба $y_g \kappa y_{CT}$, в этом случае равен 1,915. Для отношений $M_0 M^{-1} < 10$ он еще более близок к двум, а при $M_0 M^{-1} < \infty$ он равен 1,57 [3].

Чтобы проверить точность формулы Кокса [1]

$$y_g = y_{CT} + \sqrt{y_{CT}^2 + \frac{v^2}{g} \cdot \frac{y_{CT}}{1 + KM_0 / M}},$$
(17)

у которой y_g – максимальный динамический прогиб; K – коэффициент приведения массы M_0 к массе системы с одной степенью свободы, Анатолий Петрович провел расчеты для больших скоростей удара, когда $y_{CT} \ll v \sqrt{y_{CT} g^{-1} \cdot (1 + KM_0 / M)^{-1}}$. В этом случае:

$$y'_{g} \approx A \sqrt{\frac{M / M_{0}}{1 + K M_{0} / M}}$$
, (18)

причем $A = v \sqrt{y_{CT} g^{-1} M_0 M^{-1}}$.

Определяя K по методу Релея он нашел, что K = 0,25.

В табл. 1 записаны результаты его расчетов по формулам (16) и (18).

M_0/M	$y_g A^{-1}$	$y'_g A^{-1}$	M_0/M	$y_g A^{-1}$	$y'_g A^{-1}$
0,25	1,99	1,94	3	0,54	0,43
0,5	1,41	1,33	10	0,24	-
1,0	0,98	0,89	20	0,17	-

Таблица 1 — Значения y_g и y'_g

Как видно из табл. 1, с возрастанием M_0/M расхождения между точным значение y_g и приближенным y'_g возрастают, то есть формула Кокса не дает больших погрешностей лишь при малых M_0/M .

Колебания балки

2. В случае балки длиной *l* с площадью поперечного сечения *F* в общих решениях (10) и (11):

$$\alpha = \frac{2l^3}{\pi^4 EJ}; \quad \beta^2 = \frac{\rho F l^4}{\pi^4 EJ}; \quad \gamma^2 = \frac{cl^4}{\pi^4 EJ}; \quad \alpha M \beta^{-2} = \frac{2M}{M_0}; \quad (19)$$
$$G(\xi, \xi_1, -s^2) = \sum_{m=1}^{\infty} \frac{\sin(m\pi\xi)\sin(m\pi\xi_1)}{m^4 + \gamma^2 - s^2};$$

*M*₀ – масса балки; *с* – коэффициент жесткости основания.

Для вычисления прогибов балки, вследствие удара, из (10), (11) и (15) следует формула:

$$y(\xi,\xi_{1},t) = y_{CT} - \alpha M \sum_{K=1}^{\infty} \frac{g\left(\cos\frac{s_{K}t}{\beta} - \frac{\upsilon s_{K}}{\beta}\sin\frac{s_{K}t}{\beta}\right)}{1 + \frac{2M}{M_{0}}s_{K}^{4}G_{s_{K}^{2}}'\left(\xi_{1},\xi_{1},-s_{K}^{2}\right)} \cdot G\left(\xi,\xi_{1},-s_{K}^{2}\right).$$
(20)

В ней y_{CT} – статический прогиб балки на упругом основании под действием силы Mg, равный $y_{CT} = \alpha Mg G(\xi, \xi_1, 0);$

$$G_{s_{K}^{2}}'\left(\xi,\xi_{1},-s_{K}^{2}\right) = \sum_{m=1}^{\infty} \frac{\sin^{2}\left(m\pi\xi_{1}\right)}{\left(m^{4}+\gamma^{2}-s_{K}^{2}\right)^{2}};$$

s_K – положительные корни трансцендентного уравнения:

$$s_{K}^{2} G(\xi_{1},\xi_{1},-s_{K}^{2}) = s_{K}^{2} \sum_{m=1}^{\infty} \frac{\sin^{2}(m\pi\xi_{1})}{m^{4}+\gamma^{2}-s_{K}^{2}} = \frac{M_{0}}{2M}.$$

Расчет максимальных динамических прогибов существенно упрощается при центральном ударе груза по балке, опертой по краям только на опоры, когда $\xi = \xi_1 = 1/2$; $\gamma = 0$. В этом частном случае решение (16) принимает вид:

$$y\left(\frac{1}{2},\frac{1}{2},t\right) = \frac{Mgl^{3}}{48EJ} - \frac{\alpha M_{0}}{2} \sum_{K=1}^{\infty} \frac{g\cos\frac{s_{K}t}{\beta} - \frac{\upsilon s_{K}}{\beta}\sin\frac{s_{K}t}{\beta}}{s_{K}^{2} \left[1 + \frac{\phi}{8}T(s_{K})\right]}.$$
 (21)

Здесь $T(s_K) = \zeta_K^2 \left(\frac{1}{\cos^2 \zeta_K} - \frac{1}{ch^2 \zeta_K} \right) - \frac{6}{\phi}; s_K$ – положительные корни

трансцендентного уравнения:

$$tg\zeta_{K}-th\zeta_{K}=\frac{2M_{0}}{M\zeta_{K}}=\frac{2}{\phi\zeta_{K}},$$

в котором $\zeta_{K} = \frac{\pi}{2} \sqrt{s_{K}}$; $\phi = M / M_{0}$.

Благодаря тому, что [5]:

$$G\left(\frac{1}{2}, \frac{1}{2}, -s_{K}^{2}\right) = \sum_{m=1,3...}^{\infty} \frac{1}{m^{4} - s_{K}^{2}} = \frac{\pi^{4}}{64\zeta_{K}^{3}} \left(tg\zeta_{K} - th\zeta_{K}\right);$$

$$s_{K}^{4}G'\left(\frac{1}{2}, \frac{1}{2}, -s_{K}^{2}\right) = \frac{1}{16} \left[\zeta_{K}^{2}\left(\frac{1}{\cos^{2}\zeta_{K}} - \frac{1}{ch^{2}\zeta_{K}}\right) - \frac{6}{\phi}\right] = \frac{\phi}{8}T(s_{K}),$$

в решении (21), в отличие от (20), не приходится суммировать ряды по *m*. Поскольку

$$\frac{1}{\cos^2 \zeta_K} - \frac{1}{ch^2 \zeta_K} = tg^2 \zeta_K + th^2 \zeta_K = \left(tg \zeta_K - th \zeta_K\right)^2 + 2tg \zeta_K th \zeta_K =$$
$$= \frac{4}{\phi^2 \zeta_K^2} + 2tg \zeta_K th \zeta_K,$$
$$\text{To } 1 + \frac{\phi}{8} \cdot T(s_K) = \frac{1}{4\phi} \left(2 + \phi + \phi^2 \zeta_K^2 tg \zeta_K \cdot th \zeta_K\right).$$

Поэтому решение (21) принимает вид:

$$y\left(\frac{1}{2},\frac{1}{2},t\right) = \frac{Mgl^3}{48EJ} - \frac{4M}{M_0} \sum_{K=1}^{\infty} \frac{g\cos\frac{s_Kt}{\beta} - \frac{\delta s_K}{\beta}\sin\frac{s_Kt}{\beta}}{\left(\frac{s_K}{\beta}\right)^2 \left(2 + \phi + \phi^2 \zeta_K^2 tg\zeta_K \cdot th\zeta_K\right)}.$$
 (22)

Формулу (22) А.П. Филиппов обобщил в [2,6] учетом затухания колебаний за счет внутреннего рассеяния энергии в материале балки.

Колебания круглой пластины

3. При центральном ударе по круглой пластине, подкрепленной упругим основанием, согласно (11), прогиб пластины представляется выражением:

$$y(\xi,0,t) = y_{CT} - \sum_{K=1}^{\infty} \frac{\alpha M \left(g \cos \frac{s_K t}{\beta} - \frac{\upsilon s_K}{\beta} \sin \frac{s_K t}{\beta} \right)}{\alpha M \beta^{-2} s_K^4 G_{s_K^2}' \left(0, 0, -s_K^2 \right) + 1} G(\xi, 0, -s_K^2).$$
(23)

B HEM:
$$\alpha = \frac{a^4}{D}$$
; $\beta^2 = \frac{a^4 \rho h}{D}$; $\alpha M \beta^{-2} = \frac{M}{M_0} \pi a^2$; $D = \frac{Eh^3}{12(1-\sigma^2)}$; $a, h - \frac{h^2}{12(1-\sigma^2)}$; $b = \frac{h^3}{12(1-\sigma^2)}$; $b = \frac{h^3}{$

соответственно радиус и толщина пластины; E, σ – модуль упругости и коэффициент Пуассона ее материала; M_0 – масса пластины; $\xi = ra^{-1}$ – безразмерная радиальная координата;

$$y_{CT} = \alpha MgG(\xi, 0, 0);$$

 s_K – положительные корни трансцендентного уравнения:

$$1 - \frac{M}{M_0} \pi a^2 G(0, 0, -s_K^2) = 0.$$
 (24)

Функция влияния $G(\xi, 0, -s_K^2)$ в (23) и (24) зависит от условий закрепления пластины на контуре $\xi = 1$. Так, при защемлении контура, согласно [4]:

$$G(\xi, 0, -s_{\kappa}^{2}) = \frac{a^{2}}{4D\lambda^{2}} \{her(\lambda\xi) - f_{1}(\lambda) [her(\lambda)bei'(\lambda) - her'(\lambda)bei(\lambda)] \times \\ \times ber(\lambda\xi) + f_{1}(\lambda) [ber(\lambda)her'(\lambda) - ber'(\lambda)bei(\lambda)]bei(\lambda\xi)\}; \\ G(0, 0, -s_{\kappa}^{2}) = \frac{a^{2}}{4D\lambda^{2}} \{\frac{1}{2} - f_{1}(\lambda) [bei'(\lambda)her(\lambda) - bei(\lambda)her'(\lambda)]\};$$
(25)
$$f_{1}(\lambda) = [ber(\lambda)bei'(\lambda) - ber'(\lambda)bei(\lambda)]^{-1}; \lambda = \sqrt[4]{ca^{4}D^{-1} - s_{\kappa}^{2}},$$

при $ca^4 D^{-1} > s_K^2$ и

$$G\left(\xi,0,-s_{K}^{2}\right) = \frac{a^{2}}{4D\delta^{2}} \left\{-\frac{1}{2}N_{0}\left(\delta\xi\right) - \frac{1}{\pi}K_{0}\left(\delta\xi\right) + f_{2}\left(\delta\right) \times \left[\frac{2}{\pi\delta} + I_{1}\left(\delta\right)N_{0}\left(\delta\right) + I_{0}\left(\delta\right)N_{1}\left(\delta\right)\right]J_{0}\left(\delta\xi\right) + f_{2}\left(\delta\right) \times \left[\frac{2}{\pi\delta} + K_{0}\left(\delta\right)J_{1}\left(\delta\right) - K_{1}\left(\delta\right)J_{0}\left(\delta\right)\right]I_{1}\left(\delta\xi\right)\right\};$$

$$G(0,0,-s_{K}^{2}) = f_{2}(\delta) \left\{ \frac{4}{\pi \delta} + I_{1}(\delta) N_{0}(\delta) + I_{0}(\delta) N_{1}(\delta) + \frac{2}{\pi} \left[K_{0}(\delta) J_{1}(\delta) - K_{1}(\delta) J_{0}(\delta) \right] \right\};$$
(26)
$$f_{2}(\delta) = \frac{1}{2} \left[J_{0}(\delta) I_{1}(\delta) + J_{1}(\delta) I_{0}(\delta) \right]^{-1}; \quad \delta = \sqrt[4]{ca^{4}D^{-1} - s_{K}^{2}} ,$$

при $ca^4 D^{-1} < s_K^2$.

В выражениях (25) и (26) c – коэффициент постели основания; ber(z),bei(z),her(z),hei(z) – функции Кельвина нулевого индекса (штрихом над ними обозначены из производные); $J_j(z)$ – функции Бесселя индексов нуль и единица; $I_j(z)$ – модифицированные функции Бесселя; $N_j(z)$, $K_j(z)$ – соответственно функции Неймана и Макдональда индексов нуль и единица ($j = \overline{0}; 1$).

Преодолев трудности вычислительного характера, связанные с вычислением корней трансцендентного уравнения (24), а также значений специальных функций, он представил в [4] результаты расчетов для пластины, у которой $ca^4D^{-1} = 1000$; $\sigma = 0.25$.

Полученные им при v = 0 значения коэффициента динамичности $K_g = y_g / y_{CT}$ записаны в табл. 2.

i worninga =	0110 1011111 110	o p p indire in ta ta		g b subiieiinioei	
M_{*}/M_{*}	Заделанная	Свободная	M_{*}/M_{*}	Заделанная	Свободная
1110/111	пластина	пластина	1110/111	пластина	пластина
1	1,999	1,999	10	1,909	1,905
2	1,998	1,998	15	1,863	1,858
4	1,982	1,979	18	1,844	1,834
6	1,948	1,944			

Таблица 2 – Значения коэффициента динамичности K_{σ} в зависимости от M_0/M

Как видно из табл. 2, для сравнительно малых M_0/M коэффициент динамичности мало отличается от двойного.

Для вычисления K_g Анатолий Петрович вывел формулу [4]

$$y(t) \approx y_{CT} \left[1 - \left(A_1 \cos \frac{s_1 t}{\beta} + A_2 \cos \frac{s_2 t}{\beta} + \dots + A_K \cos \frac{s_K t}{\beta} + \dots \right) \right]$$

При указанных выше исходных данных множители *A_K* принимают значения, записанные в табл. 3.

Корни трансцендентного уравнения (24) представлены в табл. 4.

Эти корни можно использовать и для вычисления динамических прогибов пластины под грузом при тех скоростях удара v, когда $y_g >> y_{CT}$.

В этом случае расчет сводится к применению формулы [4]

$$y(t) \approx A\left(B_1 \sin \frac{s_1 t}{\beta} + B_2 \sin \frac{s_2 t}{\beta} + \dots + B_K \sin \frac{s_K t}{\beta} + \dots\right).$$
(27)

Таблица 3 – Значения A_K в зависимости от M_0/M

M/M	Закрепленная пластинка				Свободная пластинка					
1110/111	A1	A2	A3	A4	A5	A1	A2	A3	A4	A5
18	0,8253	0,1257	0,0380	0,0081	0,0020	0,8067	0,1398	0,0402	0,0082	0,0028
15	0,8630	0,0998	0,0296	0,0060	0,0015	0,8503	0,1090	0,0320	0,0061	0,0012
10	0,9277	0,0523	0,0160	0,0030	0,0007	0,9212	0,0577	0,0170	0,0030	0,0006
6	0,9715	0,0202	0,0066	0,0011	0,0002	0,9696	0,0219	0,0071	0,0012	0,0002
4	0,9868	0,0094	0,0031	0,0005	0,0001	0,9862	0,0099	0,0034	0,0005	0,0001
2	0,9962	0,0022	0,0008	0,0001	-	0,9965	0,0024	0,0009	0,0001	-
1	0,9992	0,0006	0,0002	-	-	0,9992	0,0006	0,0002	-	-

Таблица 4 — Значения s_K в зависимости от M_0/M

M/M	Заделанная пластинка				Свободная пластинка					
1/10/1/1	s1	s2	s3	s4	s5	s1	s2	s3	s4	s5
18	27,24	42,84	76,79	132,20	208,44	26,98	41,70	75,44	130,73	207,00
15	25,79	42,24	75,86	131,11	207,57	25,91	41,09	74,24	129,64	206,36
10	23,36	41,17	73,86	129,24	206,07	23,21	40,17	72,51	127,64	204,98
6	19,52	40,26	72,22	127,68	204,65	19,44	39,10	70,80	126,12	202,98
4	16,58	39,80	72,14	126,77	-	12,17	38,25	60,01	124,44	-
2	12,20	39,37	70,54	126,09	-	16,50	38,67	69,92	125,40	-
1	8,81	38.16	70,05	-	-	8,79	38,10	68,48	-	-

Таблица 5 – Значения B_K в зависимости от M_0/M для $\upsilon \neq 0$

M/M	Заделанная пластинка				Свободная пластинка					
11/10/11/1	B1	B2	B3	B4	B5	B1	B2	B3	B4	B5
18	0,1390	0,0333	0,0181	0,0066	0,0026	0,1348	0,0366	0,0188	0,0066	0,0035
15	0,1655	0,0313	0,0166	0,0058	0,0023	0,1638	0,0333	0,0177	0,0059	0,0019
10	0,2412	0,0240	0,0132	0,0043	0,0016	0,2386	0,0259	0,0138	0,0043	0,0013
6	0,3518	0,0151	0,0088	0,0026	0,0009	0,3500	0,0159	0,0094	0,0027	0,0008
4	0,4558	0,0104	0,0063	0,0018	0,0006	0,04538	0,0107	0,0066	0,0019	0,0006
2	0,6775	0,0049	0,0033	0,0008	-	0,6770	0,0051	0,0034	0,0009	-
1	0,9806	0,0026	0,0017	-	-	0,9799	0,0025	0,0017	-	-

Постоянные В_К принимают значения, записанные в табл. 5.

Общий множитель A зависит от скорости удара и, как прежде, определяется выражением $A = v \sqrt{y_{CT} g^{-1} M_0 M^{-1}}$.

Вычисленные по (27) безразмерные максимальные динамические прогибы $\overline{y}_{g} = y_{g} A^{-1}$ указаны в табл. 6.

Для принятых исходных данных: $y_{CT} = 3,945 \cdot 10^{-3} Mga^2 D^{-1}$ при защем-

ленном крае пластины и $y_{CT} = 3,960 \cdot 10^{-3} Mga^2 D^{-1}$ – при свободном крае [4].

Ввиду большой жесткости основания, граничные условия не оказывают существенного влияния на результаты вычислений.

Построив сложные решения краевых задач в специальных функциях, Анатолий Петрович преобразовал их к простым расчетным формулам и провел их верификацию.

		,	,		
M_0/M	Заделанная	Свободная	Свободная М/М		Свободная
	пластина	пластина	1/10/1/1	пластина	пластина
1	0,981	0,981	10	0,244	0,243
2	0,667	0,667	15	0,176	0,175
4	0,452	0,451	18	0,150	0,148
6	0,344	0,343			

Таблица 6 – Значения \overline{y}_{σ} в зависимости от M_0/M

Выводы. Подводя итог работам по теории неупругого удара отметим, что имея инженерное и математическое университетское образования Анатолий Петрович владел методами операционного исчисления, использовал в решениях задач удара ряды и знал теорию цилиндрических функций. Он видел перспективность методов операционного исчисления в механике, особенно в исследованиях нестационарных колебаний. Его работы с применением операционного исчисления опубликованы раньше, чем известные отечественные книги по операционному исчислению в механике, например [7], которые способствовали популяризации символического метода решения уравнений движения. Исследуя динамику балки и пластины на упругом основании, поверженные удару, он рассматривал тела конечных размеров. Это усложняло постановку и решения краевых задач, но позволило ему установить погрешности приближенной формулы Кокса (17), полученной энергетическим методом.

Список литературы: 1. Филиппов А.П. Колебания деформируемых систем / А.П. Филлипов. – 2-е изд. – М.: Машиностроение, 1970. 2. Филиппов А.П. Колебания упругих систем / А.П. Филлипов. – К.: Изд-во АН УССР, 1956. 3. Филиппов А.П. Удар по прямоугольной пластинке, лежащей на упругом основании / А.П. Филлипов // Прикладная математика и механика. – 1938. – Ч. 3. Вып. 3. 4. Филиппов А.П. Удар по круглой пластинке, лежащей на упругом основании / А.П. Филлипов // Прикладная математика и механика. – 1938. – Ч. 3. Вып. 3. 4. Филиппов А.П. Удар по круглой пластинке, лежащей на упругом основании / А.П. Филлипов // Прикладная математика и механика. – 1938. – Ч. 3. Вып. 3. 4. Филиппов А.П. Удар по круглой пластинке, лежащей на упругом основании / А.П. Филлипов // Прикладная математика и механика. – 1938. – Ч. II. Вып. 2. 5. Прудников А.П. Интегралы и ряды. Элементарные функции / А.П. Прудников, Ю.А. Брыков, О.И. Маричев. – М.: Наука, 1981. – 800 с. 6. Филиппов А.П. Колебания механических систем / А.П. Филипов. – К.: Наукова думка, 1965. 7. Лурье А.И. Операционное исчисление / А.И. Лурье. – М.-Л.: Гостехиздат, 1950.

Поступила в редколлегию 23.01.2012