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Po3pobieHo MeToUKy pO3paxyHKy MPOCTOPOBHX LUKIIYHO CUMETPUYHHUX KOHCTPYKIIH 3 pafialbHUMKI
peOpamu. IlepeBipeHa mparne3qaTHICTh IPOIOHOBAHOTO IMIAXOAYy 1 MiATBEPPKEHO JOCTOBIPHICTH pe-
3yJbTaTiB ONEPIKYBaHHX Ha iforo ocHOBi. BimHocHi BemmunHH medopmaniit i TPOTHHIB OpeOpeHHOL
IUTaCTUHM, OTPUMAaHI eKCIEPHUMEHTAIBHO, OJIM3bKi 0 BEJMYMH, SKi 3HAWICHO aHAIITHYHO i Ha OCHOBI
3aIPOIIOHOBAHOrO mifxony. Ha OCHOBI mpencTaBIeHOi METONWKH IPOBEICHO aHali3 HalpyXeHO-
1e(hOpMOBAHOTO CTaHy KPUILIKH ITOBOPOTHO-JIONATEBOT T1iAPOTYPOiHH.

Ka1040Bi c10Ba: IUKIIIYHO CUMETPUYHA KOHCTPYKIIisl, HAPYKEeHO-1eGOpMOBaHUIi CTaH.

The method for calculation of spatial cyclically symmetric structures with radial ribs was developed.
The functionality of the proposed approach was checked and the accuracy of the results obtained from it
was confirmed. The relative values of strains and deflections of the ribbed plate obtained experimen-
tally, close to the values found analytically and on the basis of the proposed approach. The analysis of
the stress-strain state of the kaplan turbine lid was carried out on the basis of this method.
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ON VIBRATION OF CLAMPED-FREE CYLINDRICAL SHELL

[[J'ISI pacaera COOCTBEHHBIX 4acTOT U q)OpM KoJie0aHHi KOHCOJBHBIX TMUITAHAPUICCKUX 000J109eK npu-
MeHseTcss MeToJ Penes-Putia. AHanmupy}o*rc;{ CBOMCTBa COIIPSKECHHBIX COOCTBEHHBIX Cl)()pM Koseba-
HUH. Pe3ym>TaT1>1 PpacYE€TOB CPABHUBAKOTCA C JaHHBIMU KOHEYHOIJICMCHTHOI'O aHAJIA3a.

KiroueBbie cioBa: MeTO Pene;{-PMTua, COOCTBEHHBIE HacCTOThI, COOCTBEHHBIE q]OpMI)I.

1 Introduction. Cylindrical shells are widely used in mechanical and aero-
space engineering. Theory of linear vibration of cylindrical shells is treated by Li-
essa [1]. The modern state of art of shells free vibration is treated in the book of
Amabili [2]. The applications of asymptotic methods to nonlinear vibrations of
cylindrical shell are treated in the paper [3]. The linear and nonlinear vibrations of
cantilever shell with rigid disk at the end are analyzed in the paper [4]. The forced
vibrations of the cantilever cylindrical shell are analyzed in the paper [5]. The au-
thors used the Chebyshev polynomials to approximate the shell displacements.
Parametric vibrations of cylindrical shells and influence of initial imperfections on
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shell dynamics are treated by Kochurov and Avramov [6, 7]. Pellicano [8] used the
orthogonal polynomials to expand longitudinal displacements. Thus, different
boundary conditions are satisfied.

In this paper the Rayleigh —Ritz method is used to analyze the vibration of the
cantilever cylindrical shells. The result are compared with finite element analyze.
The properties of eigenmodes of free vibrations are analyzed .

2 Problem formulation and equations of motions. Thin, clamped-free cy-
lindrical shell is considered (Fig. 1). Shear is not taken into account. It is assumed,
that the strains and displacements are small. Therefore, the strain-displacements
relations are linear. It is assumed, that the cylindrical shell is without imperfec-
tions. Thus, the cylindrical shell performs linear vibrations. The position of the
point on the shell middle surface is described by two coordinates (x,6). The projec-
tions of the displacements of middle surface points on x, 6, z curves are denoted by
u(x,0,t), v(x,0.1), w(x,0,t) respectively. Then the elastic potential energy of the shell

takes the following form [1]:
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where E is Young ‘s modulus; v is the Poisson ratio; R is shell radius; /4 is the shell
thickness. The first term of potential energy describes stretching and compression
of the shell middle surface. The second and the third terms describe the shell bend-
ing. The strains of the shell middle surface and displacements satisfy the following
equation:
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The kinetics energy of cylindrical shell can be written as
2zL
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where p, is material density; L is length of the shell.
The shell is clamped at the edge x = 0 and it is free at x = L. Thus, the follow-
ing boundary conditions are true:

u=v=w=@=0 at x=0
ox
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where N,, N,y are membrane forces; M,, M, 4 are bending and torsional moments.

Figure 1 — Circular cylindrical shell

The boundary conditions at x = 0 are geometric and the boundary conditions
at x =L are natural. The method Rayleigh —Ritz is used to find free vibrations.
Therefore, only geometric boundary conditions are satisfied and the natural bound-
ary conditions are ignored.

The shell linear vibrations take the following form:

W(x,0,)=W(x,0)sinwt;
U(x,0,t) =U(x,0)sinwt ; (3)
V(x,0,1)=V (x,0)coswt .

The equations (3) are substituted into (1, 2). Then the kinetic and potential

energies can be presented as:

T(x,0,0) = o sin*(0?) T (x,0);
P (x,0,t) =sin*(o?)P (x,0) .
As the shell is closed, the functions VIN/(x, ), U (x,0), I7(x, 6) can be pre-

sented in the form of the double Fourier series:
N1 N2
W(x,0)=>.>W,,,(x) cos(nb);
m=1n=1
N3 N4
U(x,0) = ZZUW Xn(X) cos(nb); 4
m=1n=1
N5 N6
V(x,0)=> >V, 2,(x)sin(nb),

m=1n=1

where ¢,,y, , are beam functions; W, ,, Uy V., are unknown coefficients,
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which are determined by Rayleigh- Ritz method.
For the clamped- free cylindrical shell the beam functions y,,(x) takes the fol-

lowing form:
[ 7x(2m-1)
Zm(x)_snl( 2L ]

The eigenmodes of cantilever beam are taken for the functions @,, (x):
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The following functional is used to calculate the eigenfrequencies and the ei-
genmodes:

27w
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Minimum of the functional (5) on the set of the variables X = {Wm,...,VM Nﬁ}

is determined. The conditions of the minimum of the functional have the following
form:

a; (P-a*T)=0,(n=1..N,,m=1.N,);
= (P-0*T)=0,(n=1..N;,m=1..N,); (6)

mn

%(ﬁ—aﬁ) =0,(n=1..Ni,m=1..N,).

The equations (6) can be transformed into the following eigenvalue problem:
DedC-a*M]=0, ()
where C, M are stiffness and mass matrixes.

3 Free linear vibration modal analysis. In this section a linear vibration
analysis of shell is carried out and numerical results are compared with the result,
obtained by software ANSYS. The calculations of eigenfrequencies and eigen-
modes are carried out for the shell with the following numerical values of parame-
ters:

L=048m; h=0,178-10"m; E=6,825810"Pa;
p=27122kg/m’;, v=0,3; R=0,073914 m.

The eigenvalue problem (7) is solved to calculate eigenfrequencies and
eigenmodes of the shell. The obtained results are compared with the data, obtained
by software ANSYS, and with the results, published by Kurilov and Amabili [5]
and by Leissa [1]. The results of the eigenfrequency analysis are shown on Table.
The data, obtained by the Rayleigh- Ritz method, is published in the first row of
the Table. The results, obtained by the software ANSYS, are published in the
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second row of the Table. The data, which are published in the papers [5] and [1],
are shown on the third and fourth rows of the Table, respectively. As you can see
from the Table, the results, obtained by different methods, are close.

Wave number 1 2 3 4 5
Rayleight-Ritz 177,2 204,8 2433 2941 384,3
Ansys 176,6 208,63 234,03 286,81 391,83
Kurylov 175,7 205,3 233,9 279,4 377,6
Liessa 181 207 246 280 378

Fig.2 shows the eigenmodes of the shell bending vibrations. They are ar-
ranged in ascending order of the eigenfrequency. The shell bending vibrations in
the shell longitudinal direction are governed by the eigenmode of the cantilever
beam. Note, that the first seven eigenmodes of the bending vibrations are governed
by the first eigenmode of the cantilever beam. The first and the second eigenmodes
of the bending vibrations contain eight and ten nodes in the circumference direc-
tion. The node number of the eigenmodes can be followed from Fig.2. Let us con-
sider the six eigenmode. It consists of mostly longitudinal shell vibrations. The
bending component is absent on this eigenmode.

Conclusion. The version of Rayleigh- Ritz method is suggested to study the
vibrations of the cantilever cylindrical shells. The numerical calculations confirm
the effectiveness of the suggested approach for analysis of the cantilever cylindri-
cal shells.

The properties of eigenmodes have been analyzed.
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Jlns po3paxyHKy BJIACHHX 4YacTOT 1 ()OPM KOJNMBAHb KOHCOJIBHHMX LIMJIIHIPOBUX OOOJIOHOK 3aCTOCOBY-
€Tbcs MeTo]| Penesi-Pitna. AHami3yroThest BIACTHBOCTI 3B'I3aHHUX BIACHHUX ()OpM KOJIMBaHb. PesynbraTn
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PO3paxyHKiB MOPIBHIOIOTHCS 3 JAHHUMH CKIHUCHHOCTIEMEHTHOTO aHAIi3y.
KuarouoBi ciioBa: meron Penes-Pitua, BinacHi 4acToTH, BiacHi GopmH.

The Rayleigh-Ritz method is applied to analyze the eigenfrequencies and the eigenmodes of the cantile-
ver cylindrical shells. The properties of the conjugate eigenmodes are analyzed. The results of the
analysis are compared with the data of finite element calculations.

Key words: Rayleigh-Ritz method, eigenfrequencies, eigenmodes.
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