С. ДАРИЯ ЗАДЕ, аспирант, НТУ «ХПИ»

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ СТЕКЛОПЛАСТИКА С ОДНИМ И ДВУМЯ ОДИНАКОВЫМИ КРУГОВЫМИ ОТВЕРСТИЯМИ

Прямоугольная пластинка из полимерного материала с отверстиями исследовалась при равномерном растяжении с помощью тензорезисторов. Экспериментальные результаты сопоставлены с аналитическими и МКЭ.

Ключевые слова: тензорезистор, композит, стеклопластик, деформация, напряжение.

1 Постановка задачи. Экспериментальные исследования, связанные с решением задач теории упругости композиционных материалов, представляют определенные сложности (осуществление характера нагружения, включая направление, равномерность, его скорость, граничные условия, условия сопряжения и т.д.).

Целью данной работы является экспериментальное исследование концентрации напряжений около отверстия в стеклопластиках с одним и двумя круговыми отверстиями и сопоставление экспериментальных результатов с аналитическими и расчетными.

2 Исследуемые образцы. Испытанные образцы имели прямоугольную форму с размерами 280×180 мм, толщиной 2 мм с отверстием радиусом R = 10 мм и расстоянием между центрами отверстий L = 3R (рис. 1).

Рисунок 1 – Чертеж образцов, используемых в исследовании

© С. Дария заде, 2013

Материал образцов – стеклотекстолит СТЭФ-1¹, состоящий из слоев плетеной стеклоткани, склеенных между собой методом горячего прессования. В качестве связующего применяется термореактивная эпоксифенольная смола.

Армированные тканевым наполнителем пластинки СТЭФ-1 являются макроскопически ортотропными, имеющими в плоскости укладки слоев две ортотропные оси симметрии механических свойств, совпадающие с укладкой нитей основы и утка (рис. 2).

Рисунок 2 – Листовой стеклотекстолит (1 – нить основы, 2– нить утка, 3 – сечение вдоль утка)

Характеристики упругих постоянных стеклотекстолита СТЭФ-1, полученные динамическим методом, представлены в табл. 1. В диссертации [1], описан динамический метод определения характеристик упругих постоянных стеклотекстолита марки СТЭФ-1.

Механич.	E_1	E_2	E_3	G_{12}	G_{13}	G_{23}			
Свойства	(ГПа)	(ГПа)	(ГПа)	(ГПа)	(ГПа)	(ГПа)	V ₂₃	V12	V13
композита СТЭФ-1	5.62	4.59	4.59	0.406	0.406	0.28	0.24	0.22	0.22

Таблица 1 – Упругие постоянные стеклотекстолита СТЭФ-1

3 Экспериментальная установка. Исследование напряженно-деформированного состояния стеклопластинок выполнялось на экспериментальном стенде (рис. 3, 4).

Образец (пластина с одним или двумя отверстиями – см. рис. 1) закреплялся в зажимах (рис. 5) растягивающей установки (рис. 4) ZWICK², причем крепление выполнялось на пластинке (см. рис. 4) в местах достаточно далеко от контура отверстия, чтобы исключить влияние захватов на границы отвер-

 $^{^1}$ Производится компанией «Молдавизолити»
по ГОСТ 25500-82 [2] и ГОСТ 16652-74 [3] листами (890 \times 1020) + 10 мм с номинальной толщиной 5 до 50 мм.

² Установка ZWICK (модель Z050/TH3A) работает методом «callbration» в стандарте: IDS 350 в соответствии с SFDW 50506/2. Может создавать растягивающую и изгибающую нагрузки.

стий (см. рис. 5). Метод стандартизованы при растяжении плоских образцов ГОСТ 25.601-80 [4].

Рисунок 3 – Структурная схема экспериментального стенда для исследования пластин

Рисунок 4 – Общий вид экспериментального стенда для исследования пластин: 1 – растягивающая, сжимающая и изгибающая установка ZWICK, Z050/TH3A; 2 – компьютер; 3 – испытуемый образец, 4 – источник питания; 5 – тензомост; 6 – вольтметр; 7 – подвижный зажим; 8 – неподвижный зажим

ISSN 2078-9130. Вісник НТУ «ХПІ». 2013. № 63 (1036)

Рисунок 5 - Схема установки и закрепления образца для испытания

Компьютерная система установки (см. рис. 4, поз. 2) обеспечивала контроль процесса нагружения (табл. 2)

Датчики ZWICK¹ установлены по контуру отверстий пластинок, являющихся концентраторами напряжений (рис 1, 6).

r doshiqu 2 - r exhim henbirunnin						
Параметры	Величины	Размеры				
Усилия нагружения	50	KN				
Напряжение источника	3.2	V				
питания						

Таблица 2 – Режим испытаний

Тензомост включает, помимо датчиков, еще 3 сопротивления по 120 Ом и источник питания напряжением 3.2 вольта (рис. 4, поз 5; рис. 6) [5].

4 Выполнение измерений. Испытание пластин выполнялось на экспериментальном стенде по программе, основные параметры которой указаны в табл. 2. Нагружение образцов осуществлялось в статическом режиме, обеспечивающем равномерное растяжение.

Напряжение на измерительной диагонали моста:

$$V_u = \frac{\Delta R}{4R} V_{\Pi} , \qquad (1)$$

деформация датчика:

 1 Датчик ZEMIC модель BAB 120 ohm-4AA250, размером 3.9 × 2.6 мм.

$$\left\langle \varepsilon_{y} \right\rangle = \frac{1}{n} \frac{\Delta R}{R},$$
 (2)

где v_{Π} , v_u – измеряемое напряжение питания, ε_y – деформация вдоль оси y, R – сопротивление плеча моста, n – коэффициент тензочувствительности.

Рисунок 6 – Испытуемая пластина с одним отверстием, закрепленная в зажимах, и тензомост

В системе ортогональных декартовых координат, совпадающей с плоскостями симметрии гомогенного ортотропного материала, закон Гука имеет следующий вид:

$$\langle \varepsilon_x \rangle = a_{11} \langle \sigma_x \rangle + a_{12} \langle \sigma_y \rangle; \quad \langle \varepsilon_y \rangle = a_{21} \langle \sigma_x \rangle + a_{22} \langle \sigma_y \rangle; \quad \langle \gamma_{xy} \rangle = a_{44} \langle \tau_{xy} \rangle$$
(3)

На границах отверстий для датчиков, установленных на оси *x*, применяются граничные условия

$$\langle \sigma_x \rangle = 0; \quad \langle \tau_{xy} \rangle = 0.$$
 (4).

C учетом (2) и (3) для $\left< \varepsilon_{y} \right>$ и $\left< \sigma_{y} \right>$ будем иметь:

$$\sigma_{\max} = \sigma_{y}; \quad K = \frac{\sigma_{\max}}{P}, \tag{5}$$

39

ISSN 2078-9130. Вісник НТУ «ХПІ». 2013. № 63 (1036)

где σ_{max} – максимальное напряжение возле отверстия, P – растягивающая сила, K – коэффициент концентрации напряжений.

5 Результаты аналитического исследования. В качестве аналитического метода использовалось аналитическое решение плоской задачи теории упругости с применением функций комплексного переменного[6].

Компоненты тензора напряжений выражаются через введенные функции следующим образом

$$\sigma_{x} = 2 \cdot \operatorname{Re} \left[\mu_{1}^{2} \varphi_{1}'(z_{1}) + \mu_{2}^{2} \varphi_{2}'(z_{2}) \right]; \qquad \sigma_{y} = 2 \cdot \operatorname{Re} \left[\varphi_{1}'(z_{1}) + \varphi_{2}'(z_{2}) \right]; \tau_{xy} = -2 \cdot \operatorname{Re} \left[\mu_{1} \varphi_{1}'(z_{1}) + \mu_{2} \varphi_{2}'(z_{2}) \right].$$
(6)

Воспользуемся комплексным представлением напряжений через две функции φ_1 и φ_2 , которые должны удовлетворять граничным условиям (4) Решение в случае одного отверстия получается с помощью функций [7,8]:

$$\varphi_{1}(z_{1}) = A_{0} + A \ln \zeta_{1} + \sum_{m=1}^{\infty} \frac{\overline{\beta}_{m} - \mu_{2} \overline{\alpha}_{m}}{\mu_{1} - \mu_{2}} \zeta_{1}^{-m}, \qquad (7.a)$$

$$\varphi_{2}(z_{2}) = B_{0} + B \ln \zeta_{2} + \sum_{m=1}^{\infty} \frac{\overline{\beta}_{m} - \mu_{1} \overline{\alpha}_{m}}{\mu_{1} - \mu_{2}} \zeta_{2}^{-m}.$$
(7.6)

Здесь $\zeta_1 = \frac{z_1 + \sqrt{z_1^2 - 1 - \mu_1^2}}{1 - i\mu_1}; \quad \zeta_2 = \frac{z_2 + \sqrt{z_2^2 - 1 - \mu_2^2}}{1 - i\mu_2}.$

В случае пластинки с двумя отверстиями функции φ_1 и φ_2 могут быть представлены в виде:

$$\varphi_1(z_1) = A_0 + A \ln \zeta_1 + \sum_{m=1}^{\infty} \frac{\overline{\beta}_m - \mu_2 \overline{\alpha}_m}{\mu_1 - \mu_2} [\zeta_1(z_1 - l) + \zeta_1(z_1 + l)]^{-m}, \qquad (8.a)$$

$$\varphi_{2}(z_{2}) = B_{0} + B \ln \zeta_{2} + \sum_{m=1}^{\infty} \frac{\overline{\beta}_{m} - \mu_{2} \overline{\alpha}_{m}}{\mu_{1} - \mu_{2}} [\zeta_{2}(z_{2} - l) + \zeta_{2}(z_{2} + l)]^{-m}.$$
(8.6)

Здесь l = L/2.

Результаты аналитического исследования представлены коэффициентами концентрации напряжений на контуре отверстия в пластинке с одним и двумя отверстиями при L = 3R (рис. 7).

Для проверки достоверности результатов по экспериментальной методике также выполнен расчет по методу конечных элементов с помощью программного комплекса ANSYS [9].

Использован конечный элемент Plane 182, который содержит 6 узлов и имеет две степени свободы в каждом узле (перемещения вдоль осей x, y). В силу симметрии задачи вычисления проведены для четверти пластины (рис. 8).

Модели стеклопластинки с одним и двумя отверстиями при L = 3R имеют 4426 и 4396 элементов. На рис. 9, приведено распределение напряжений при одноосном растяжении вдоль оси y.

Растягивающая сила Р равна 100 Н.

Рисунок 7 – Распределение коэффициента концентрации напряжений на контуре отверстия для стеклотекстолита: a - c одним и δ – двумя отверстиями при L = 3R

Рисунок 8 – Сетка конечных элементов стеклопластинки: *a* – с одним; *б* – с двумя отверстиями

Рисунок 9 – Распределение напряжений на контуре отверстия для стеклопластинки при L = 3R: a - c одним; $\delta - c$ двумя отверстиями

6 Сопоставление экспериментальных результатов с аналитическими и МКЭ. Результаты исследования экспериментальным, аналитическими и методом конечных элементов ортогонально-армированных пластинок с одним и двумя круговыми одинаковыми отверстиями при одноосное растяжение вдоль оси y при L = 3R показаны в табл. 3, 4, 5, 6 и на рис. 10, 11.

отверстиями при $L = 3R$						
K	Экспериментальное	Теоретический	Метод конечных			
Л	исследование	анализ	элементов			
Одно отверстие	3.88	4.1	4.19			
Два отверстия	4.92	4.93	4.92			

Таблица 3 – Концентрация напряжений в стеклопластинке с одним и двумя отверстиями при L = 3R

Таблица 4 – Напряжения и деформации по контуру отверстия в стеклопластинке (1 отверстие)

D	σ, МПа			3			
1, 1	MVD	Аналити-	Экспери-	MVD	Аналити-	Экспери-	
	ческий	мент	WIK5	ческий	мент		
2	26.7	26.0	25.0	0.0053	0.0052	0.0050	
4	53.4	52.0	50.0	0.0106	0.0104	0.0110	
6	80.1	78.0	75.0	0.0159	0.0156	0.0180	
8	106.8	104,0	96.0	0.0212	0.0208	0.0230	
10	133.5	130.0	121.4	0.0265	0.026	0.2675	

Таблица 5 – Напряжения и деформации по контуру отверстия в стеклопластике (2 отверстия)

D		σ, МПа		3		
т, кН	мкэ	Аналити-	Экспери-	мкэ	Аналити-	Экспери-
KII MIKJ	ческий	мент	WIK5	ческий	мент	
2	31.0	30.4	29.0	0.0073	0.0071	0.0068
4	62.0	60.8	58.0	0.0146	0.0142	0.0130
6	93.0	91.2	88.0	0.0219	0.0213	0.020
8	124.0	121.6	120.0	0.0292	0.0284	0.0270
10	155.0	152,0	150.0	0.0365	0,0355	0.0337

Таблица 6 – Коэффициент концентрации по контуру отверстий в стеклопластинке

L/R	K					
	МКЭ	Аналитический	Эксперимент			
2.5	6.00	5.81	-			
3	4.92	4.93	4.90			
6	4.50	4.40	-			
8	4.21	4.20	-			
9	4.19	4.1	-			

В табл. 6 и на рис. 11 представлены значения коэффициента концентрации напряжений возле контура отверстия в ортогонально-армированных пла-

стинках с двумя круговыми одинаковыми отверстиями для различных расстояний между центрами отверстий.

Рисунок 10 – Зависимость напряжений и деформаций от нагрузки в ортогональноармированных пластинках: *а* – напряженное состояние; *б* – деформированное состояние с одним круговым отверстием; *в* – напряженное состояние; *г* – деформированное состояние с двумя круговыми одинаковыми отверстиями; методы: 1 – конечных элементов, 2 – теоретического анализа, 3 – экспериментального исследования

Максимальные расхождения между экспериментальными и расчетными результатами составляют для стеклопластика с одним отверстием 4.6 % по напряжениям, 1.2 % по деформациям и 5.36 % по коэффициенту концентрации напряжений.

При изменении расстояния между двумя отверстиями в диапазоне $L/R = 2.5 \div 9$ коэффициент концентрации напряжений изменяется в пределах $K = 4 \div 6$.

Выводы. Исследовались прямоугольные стеклопластики из полимерного материала с одним и двумя отверстиями в условиях равномерного растя-*ISSN 2078-9130. Вісник НТУ «ХПІ». 2013. № 63 (1036)* 43 жения. Деформации, напряжения и их концентрация по контуру отверстий определены экспериментально с помощью тензорезисторов, включенных в тензометрический мост. Сопоставление экспериментальных результатов с аналитическими и МКЭ свидетельствует о достоверности полученных данных.

Рисунок 11 – Концентрация напряжений в ортогонально-армированных пластинках с двумя отверстиями; методы: 1 – конечных элементов, 2 – теоретического анализа, 3 – экспериментального исследования

Список литературы: 1. Моваггар А. Разработка модели усталости композиционных материалов на основе континуальной механики повреждаемости : дис. ... канд. техн. наук. – Х.: НТУ «ХПИ», 2012. – 138 с. 2. ГОСТ 25500-82. Пластики слоистые электротехнические листовые. Общие технические условия. – М.: ИПК Изд-во стандартов, 1997. – 33 с. 3. ГОСТ 16652-74. Стеклотекстолит электротехнический листовой. Технические условия. – М.: ИПК Изд-во стандартов, 1997. – 33 с. 3. ГОСТ 16652-74. Стеклотекстолит электротехнический листовой. Технические условия. – М.: ИПК Изд-во стандартов, 1999. – 13 с. 4. Васильев В. В. Композиционных материалов: Справочник / В. В. Васильев, В. Д. Протасов, В. В. Болотин, и др. – М.: Машиностроение, 1990. – 512 с. 5. Ушакова Б. Н. Экспериментальная механика. – М.: Мир, 1990. – 616 с. 6. Мусхелишели Н. И. Некоторые основные задачи математической теории упругости. – М.: Наука, 1966. – 708 с. 7. Лехницкий. С. Г. Анизотропные пластинки. – М.: Гос. изд. техн.-теор. лит-ры, 1957. – 464 с. 8. Савин Г. Н. Распределение напряжений около отверстий. – К.: Наукова думка, 1968. – 888 с. 9. Jamsheedee N., Javanbakht B. ANSYS. – Tehran: SIMIN DOKHT, 2011.– 624 с.

Поступила в редколлегию 28.10.2013

УДК 539.3

Экспериментальное исследование напряженно-деформированного состояния стеклопластика с одним и двумя одинаковыми круговыми отверстиями / С. Дария заде // Вісник НТУ «ХПІ». Серія: Динаміка і міцність машин. – Х.: НТУ «ХПІ», 2013. – № 63 (1036). – С. 35-45. – Бібліогр.: 9 назв.

Прямокутна пластинка із полімерного матеріалу з отворами досліджувалася при рівномірному розтягуванні за допомогою тензорезисторів. Експериментальні результати зіставлені з аналітичними і МКЕ.

Ключові слова: тензорезистор, композит, склопластик, деформація, напруга.

Rectangular plate of a polymeric material with holes investigated under uniform tension using strain gage. The experimental results are compared with analytically and FEM.

Keywords: strain gage, composite, fiberglass, strain, stress.

УДК 539.3

В. *М. ДЕЕВ*, канд. техн. наук, доцент, Пермский государственный педагогический университет

НЕКОТОРЫЕ ВОПРОСЫ ЭЛЕМЕНТАРНОЙ ТЕОРИИ ПРОСТЫХ ЧИСЕЛ

В статье рассмотрены некоторые вопросы элементарной теории простых чисел. Ключевые слова: объект, простое число.

В античные времена греки создали теорию натуральных чисел. Каждое натуральное число являлось суммой *К* единиц:

$$N_K = \underbrace{\left\{1 + 1 + \ldots + 1\right\}}_K.$$

В таблице таких N_K каждое число имело бы порядковый номер K. Для обозначения натуральных чисел приняты иероглифы – цифры, созданные индусами и арабами. Каждое число обозначает некоторое количество объектов. После изобретения нуля, который обозначает отсутствие какого-либо объекта материальной природы, в Европе развилась десятичная система счисления, позволившая создать многоциферные натуральные числа. Теперь натуральное число можно было обозначать как N_{KSII} , где K – номер натурального числа в таблице, S – количество цифр в этом числе, Π – количество нулей в цифрах этого числа. Следует отметить, что каждое натуральное число в таблице порождает еще S! чисел, имеющих отличное расположение цифр по сравнению с табличным числом.

Были построены некоторые функции от исходных чисел. Возникли таблицы степеней натуральных чисел, корней натуральных чисел, логарифмов натуральных чисел по любому основанию. Греки научились разлагать натуральные числа на множители:

 $2 \cdot 2 = 4; 2 \cdot 3 = 6; 2 \cdot 4 = 8$ ит.д.,

а также нашли числа, которые являются неразложимыми на множители и назвали их простыми P_{KSII} . В первой десятке натуральных чисел простых чи-

© В. М. Деев, 2013