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The paper is devoted to the approach and analytical methods of predicting changes in the eigen oscillations of beams under the
conditions of longitudinal tension during creep. On the basis of the classical equation of oscillations of beams under tension, a method
for estimating eigen frequencies that can vary during creep is obtained. Expressions for the longitudinal force, which depends on the
physical and mechanical parameters of the material, were obtained. A relationship was found for determining the time of significant
influence of creep on the eigen frequencies. With the help of the obtained expression for the value of the time to fracture of the beam
using the Kachanov continuity parameter, an approach to determining the influence on the frequency of the hidden damage
accumulation process is proposed. The case of large deflections of the beam is considered in a geometrically nonlinear statement
using the method of many scales with the expansion of the solution by a small parameter. The processes of dynamic creep are
considered, in which the acceleration of the rate of creep strains in the material is provided by the contribution of amplitude stresses.
The resulting equation is solved by the method of weighted residuals in the Galerkin form. Dependencies for determining the rate of
stress relaxation in the beam during creep were obtained. The limiting values of the compressive force in terms of the loss of stability
of the beam under the given conditions of creep and oscillations are estimated. Computational modeling was performed and results
were obtained that allow determining the sensitivity of the eigen oscillation frequencies of beams made of different structural
materials to tensile creep. Heat-resistant alloys, alloyed steels, titanium, aluminum alloys and tin-lead solder at temperatures inherent
in the typical operating conditions of structural elements made from them are considered. It is shown that the smallest effect of creep
on eigen frequencies is found for light alloys. With the help of the obtained ratios, the frequencies of nonlinear oscillations that can
occur in the beams were analyzed, and a skeletal curve was built.

Kurouosi ciioBa: oscillations, eigen frequencies, creep, beam, tension, bending.

O0.K. MOPAYKOBCBKHH, /I.B. BPECIABCbKHH, 0.A. TATAPHHOBA
KOJIMBAHHA BAJIOK ITPH PO3TA31I B YMOBAX ITOB3YYOCTI

CTaTTIO IPUCBAYCHO MiAXOMY Ta aHAJITHYHHUM METOJaM IPOTHO3YBAaHHS 3MiHIOBaHHS BJIACHHUX KOJHMBAaHb OalloK B yMOBax il
CHJI TIO3JIOBXXHBOTO PO3TATY HpH moB3ydocTi. Ha 0a3i KIacH4HOrO pIiBHAHHS KOJNHMBAaHb OAalOK NPH PO3TA3I OTPHMAHO METO.
OLIIHIOBAaHHSI BJIACHHUX YacTOT, SIKi MOXYTbh 3MiHIOBATHCH IIPU MOB3y4yocTi. OTPUMaHO BHpa3u Ul MO30BKHBOI CHIIH, IO 3aJIEKHUTh
Bix (i3MKO-MeXaHIUHHUX IapamMeTpiB Marepiaiy. 3HaiiIeHO CIiBBiJHOIICHHS /ISl BU3HAUCHHS Yacy iCTOTHOTO BIUIMBY MOB3y4YOCTi Ha
BJIACHI 4acTOTH. 3a JOMOMOTOI0 OTPHMMAHOI'O BHpa3sy IJIsi 3HAUYEHHS 4acy A0 PyHHyBaHHsS OaJki 3 BUKOPUCTaHHSIM MapameTpy
cyuinpHOCTi KauaHoBa 3amponoHOBaHO MiAXil 10 BU3HAUCHHS BIUTMBY HA YaCTOTH HPOIECY HAKOMHYCHHS NPUXOBAHUX ITOLIKO/KEHb.
Bumamok BENMKUX MPOTHHIB OaJKH PO3IJIAHYTO Y TEOMETPUYHO HEiHIHHIM IMOCTAaHOBII 3 BHKOPHCTAHHSAM METOQy OaraThox
MacmTabiB 3 PO3BUHEHHSIM PO3B’S3KY 32 MAIMM TapaMeTpoM. PO3MIISTHYTO MpoIecH AWHAMIYHOI IMOB3YYOCTi, B SIKii MPUCKOPEHHS
MBHAKOCTI JedopMariii MOB3ydocTi B Marepiami 3a0e3neuyeThcss BHECKOM AaMIUTITy[THHX HampyXeHb. PO3B’S30K OTPHUMAaHOTO
PIBHSHHS BHKOHYETHCS METOJIOM 3BaXXCHHX BIIXwWiiB y (opmi [ampopkina. OTpUMaHO 3aleKHOCTI AT BU3HAYCHHS MIBUAKOCTI
penakcaiiii HanmpyXeHb y Oanii npu moB3ydocTi. OI[iHEHO TPaHWYHI 3HAYCHHS CHJIM CTHCKAHHS 3 TOYKH 30pYy BTPaTH CTIHKOCTI
CTPIDKHS B 3aJaHMX YMOBax IIOB3YYOCTi Ta MOJXKJIMBOCTI BHHHMKHEHHS KOJIMBaHb. BUKOHAHO pO3paxyHKOBE MOJENIOBAHHS Ta
OTPUMAaHO pe3yJIbTaTH, IO JO3BOJISIOTH BU3HAUYNUTH YyTJIMBICTh YacCTOT BJIACHUX KOJHMBaHb OAalOK, BUTOTOBJIEHHX 3 PI3HUX
KOHCTPYKTHBHHX MaTepialiB, 10 PO3TATY MPH MOB3Y4OCTi. PO3IIITHYTO *%apoOMillHi CIUIaBH, JISTOBAaHI CTali, TATAHOBHIA, ATFOMiHi€BUIT
CIJTaBH Ta OJIOB’SIHO-CBHHIICBMII NIPHUMIN IPH TeMIlepaTypax, sKi NPUTaAMaHHI TUIIOBUM EKCILUTyaTallifHUM YMOBaM KOHCTPYKTHBHHX
€JIEMEHTIB, 1[0 3 HUX BHIOTOBISIOTHCS. [I0Ka3aHO, 10 HafiMEHIIMil BIUIMB MOB3Y4OCTi Ha BIIACHI YaCTOTH BMSBICHO IS JIETKHX
CIUIaBiB. 3a JOMOMOTOI0 OTPHMAHHX CIHIBBIIHOIIEHBb MPOAHANI30BAaHO YACTOTH HENHIMHMX KOJHMBaHb, IO MOXYTh BiIOyBaTuch y
Oarkax, Ta MoOy/IOBaHO CKENETHY KPHBY.

Knrwou4ogi cioBa: KoJIMBaHHS, BIACHI YaCTOTH, TIOB3YUiCTh, OAJIKa, PO3TAT, 3TUH.

Introduction. In many engineering applications, implemented both analytically and numerically [3-5].

beam elements, which can be irreversibly deformed due to
the occurrence of creep deformation under conditions of
high temperature effects, are widely used. Models of rods
(tension) and beams (bending) are also often used as a
design model of a structural element. Cyclic changes in
the deformed state, or oscillations during irreversible
deformation, occur in structures of power and transport
engineering [1], cable engineering [2], etc.

Methods of estimating frequencies and modes of
oscillations of beam systems are well developed and

However, taking into account the effect of static loading is
a more difficult problem. Since the appearance of the
elastic classical formulation of the problem by J. Morrow
[6] and S.P. Timoshenko [7], this problem continues to
remain in the center of attention of researchers [2, 4, 8-
10]. The approaches of the Euler—Bernoulli beam theory
[8, 9] or the theory of S.P. Timoshenko [7] are used. It is
noted that if the initial tension of the beams by axial forces
is not extremely large, even relatively small transverse
amplitudes of oscillations can cause significant nonlinear
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effects [4]. Static and dynamic approaches for evaluating
the influence of fastenings on the values of axial forces
have also been formulated [9, 10].

On the other hand, the irreversible deformation of
the beam material, which occurs over time in beams
during creep, was studied separately. Approaches and
methods for calculating beams that bend and tense during
creep are well developed [11, 12]. The authors of [13]
note that the solutions of such problems are necessary for
a detailed analysis of the stress-strain state, because when
polycrystalline materials are deformed at -elevated
temperatures with moderate values of the applied forces,
significant stresses occur in some places. Models are
being developed for estimating beam failure due to creep
[14].

Analysis of the real behavior of structural elements
under conditions of high temperature and cyclic loading,
which is implemented, for example, in turbine blades,
shows that the processes of oscillations and irreversible
deformation during creep occur simultaneously. In this
regard, the methods for calculating the stress-strain state
that must simultaneously take into account both processes
have to be developed. The methods for the evaluation the
influence of vibrations on the creep and the damage
accumulation in the material of the structural element
were developed in previous authors’ papers [15, 16]. The
study of the inverse problem, the influence of creep on the
amplitudes of forced oscillations was started in [17]. This
publication continues research in this direction. The eigen
oscillations of the beams are studied, taking into account
their pre-tension under creep conditions. Eigen
oscillations of beams with consideration of creep due to
preliminary tension. Eigen and free oscillations of the
beams are studied, taking into account their preliminary
tension and creep due to this tension. If the nature of
natural oscillations of a structure is known, then it is
possible to evaluate its inherent internal properties that
manifest themselves under the action of external
disturbances.

In the case of eigenoscillations of systems with
constant stiffness, the amplitudes of the deflections of the
system points from the equilibrium position do not depend
on the frequency and, when oscillations occur, are
determined only by the initial conditions. In the case of
small linear oscillations, the stiffness characteristics can
be considered constant and the internal forces are reduced
to bending stresses. If, at the same time, preliminary
tension (compression) is taken into account, then in
addition to the shear force from bending, the equations of
motion of the element include a term with transverse force
in the form of a projection of membrane stresses on the
normal to the axis, and the equations of motion have the
following form [7]:

Elw" FPW" + pSw =0, 1)

where El is beam bending stiffness; P is membrane
force; sign «—» correspond to tension as well as «+» for

compression; oS5 is beam linear mass; ( ), =0( )/ox,

('): o( )/et . Equation (1) should be supplemented with

boundary and initial conditions. For example, boundary
conditions for hinged support:
w(0,t)=w""(0,t)=w(L,t)=w""(L,t)=0, L is beam’s length-
Initial conditions: w(x,0)= Li(x), W(x,0) = La(x).

When deriving (1), it is assumed that the level of
preloading is sufficiently high and the influence of
bending stresses on it can be neglected. Under these
conditions, due to creep, the membrane force, the level of
which during preliminary tension (compression) is equal
to Po, will change during holding (relax). Consequently,
creep will affect the eigen oscillation characteristics, since
the previously found value of the membrane forces P is
included in the initial conditions. Besides, these above
conditions include the value of P=P(z), where r is the
holding time of the beam during creep to the moment of
occurrence of transverse vibrations.

If oscillations occur after holding at creep, then

P=R[1+(m-1)E5"" Pom’IQ(r)Tﬁ : @)

where Py is absolute value of preliminary loading of
a beam; 7 is creep holding time before to oscillations
occurrence; m, Q(z) are creep material parameters, which
are determined by creep curves data processing by use of
Norton law [11].

Fort the secondary creep its rate is determined by the
following relations:

¢=Bo™, c(0)=0, , ®)
Q(t):jB(t)dt =B, 4)
oc=R /0.

The circular frequency of transverse oscillations of
the beam is determined from (1) and, for example, for

fixed hinged edges
o, =, \1¥P/P,,, (®)

where @ is angular eigen frequency of beam

transverse oscillations without preliminary tension
nr

(compression); P, =[Tj El is Euler‘s critical force at

buckling in n-th form [7]; P is the value of load, obtained
by use of (2). In the case of compression with load value
P., the beam loses its stability and @, =0.

Let us introduce the following notation and take into
account (4):

2, - Am—l)(%j E, ©)
2(7) = ——— . ™
m:j/1+ @,
Then
P= PO;((T) , (8)
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o, =o' /14—-:—0;((7) . 9)

It follows from the last relation (9) that the angular
frequency of beam oscillations that occurs after creep
exposure by preliminary tension (minus in the expression
under the root in (9)) or compressed (plus - in (9)) will
depend on the duration of creep until the moment of
oscillations occurrence z. Moreover, since y(z) decreases
with increasing 7, we can conclude that the effect of
preliminary tension (compression) under creep conditions
decreases with holding, and theoretically at 7 — oo, the
angular frequency will tend to the frequency of eigen
vibrations without taking into account creep. Note that if
the relaxation rate is low, then a sufficiently high level of
residual stresses is established in the beam, which persists
for a long time, and in this case creep fracture can occurs.
In this case, y(7)=const up to fracture moment.

The oscillations that arise during this period will
depend only on the initial deviations and their rate, while
the membrane forces practically do not vary. Following
this, the creep time from the point of view of the
oscillations properties can be divided into two segments

(0,7,) and (rst,rf,). In the first segment, the angular

oscillation frequency depends on the exposure time
7€(0,7y), and in the second isn‘t. However, in the

second case, fracture due to creep is possible.

Let us analyze the nature of the change in the
function x(z) (7) included in (9). Consider several
materials used in conditions where creep properties cannot
be avoided - high-temperature alloys, S816 and N155,
alloy steels SUS 347 and 45X14N14V2M, titanium alloy
OT-4, aluminum alloys - duralumin D16AT and cast alloy
AMNG, solder 81Pb-19Sn. The physical and mechanical
properties of these materials are presented in the Table at
the operating temperatures of the structural elements from
which they are made. The calculated dependencies y(7)
are shown in Fig. 1, the curve numbers in the figure
correspond to the row numbers in the table.

The results obtained show that aluminum alloys and
solder have the best properties in terms of the rate of
return of the oscillation frequency to its own values,
followed by a titanium alloy. The effect of tension on
heat-resistant alloys continues for a long time. Alloy steels
show different behavior.

Unfortunately, it is not possible to evaluate the
properties of the alloy response to tension during creep by
the value of one parameter: it is known that the processing
of creep curves for the same stress range can give
different combinations of the factor B and the exponent m.
In the general case, the use of relation (7) can be
recommended.

Number Material Tempe | Youn Creep Creep
of -rature, constant constant
curve K modul | B, MIla” | m
us "/h
E10%,
MPa
1 S816 1089 1.55 1.68.10% | 9.17
2 N155 1025 1.58 2.79-10%° | 6.68
3 SUS 347 923 1.6 7.6-10 3.7
4 45X14N14 873 1.65 2-101° 3
V2M
5 OT-4 773 1.0 1.78.10% | 18.2
6 D16AT 593 0.33 3.39:10°° 3
7 AMnN6 593 0.7 6.16-10° 45
8 81Pb-19Sn | 293 0.55 6.83-107 3
Table 1 — Material constants
X0
—_—
ol - z"h

Fig.1 — Dependence between influence function y(z)
and holding time ¢

Under relaxation conditions, when the stress
continuously decreases, it does not lead to discontinuity.
The relaxation rate turns out to be significant, which
depends on the physical nature of the materials, the level
of initial stresses and temperature, as well as on other
external factors. In essence, under conditions of
continuous relaxation, ordinary aging occurs, and the
residual stress rather quickly becomes less than safe for
fracture, and the oscillation frequency is determined by
the holding time of the rod during creep.

Analysis of creep fracture time.

Let us concentrate on determining the time before
fracture of the rod, taking the fracture model with the
kinetic equation for the Kachanov‘s continuity parameter
w [18] in the following form:

G(t)]
W y
where y(0)=1; w(z,)=0; Ay, r are material

constants, which are usually determined from creep and
long term curves.
From (8) we have:

1
o(t)=D,[c+Yg, ],
where D, is the constant, depending on temperature

and material properties, since the material constants of
elasticity and creep depend on them:

w=—a{ (10)

(11)

D, =[(m-1) BlE]ﬁ. (12)
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Here ¢, is the initial stress function, as follows from

(6).
Substitution (11) into the evolution equation (10) and
subsequent integration leads to the dependence

1
7 =B +o" [F -, (13)
where
1
k| (m-1)B,E |n-1 _r—

) k =
m A(r+1) m-1
For the case of material with linear visco-elastic
properties ¢ =Bo and in can be found from Maxwell
equation [19]:

T

P=Pe", (15)

B . N
where t, = £ is relaxation time value.

Correspondingly, for the fracture time value we find

T, = —t—“ln(l—rT—UJ , (16)
r t
where TU:;r is the fracture time
R
| (r+1
A% e

R . .
value at stress o, = EO in creep conditions.

The angular frequency of oscillations that occur after
holding, in the case of linear viscoelasticity of the
material, will be calculated as follows:

w, =] ’1?5—06T , 7€(0,7,),

where 7, is calculated by use of Eq.(16) and
determines the value of the time to fracture of the beam
during relaxation.

Viscoelastic behavior is characteristic of polymers at

(A7)

o, =%s(0.5+0.6)aT, where o is the yield limit of

material. In the area of nonlinear creep o, >0.50;,

m>>1, and ¢,' ~0 approximately can be taken. This

supposition is equivalent to the assumption that the
change in membrane stresses after a long exposure is
independent of the initial loading. Then

1
;((Z') = Dmrﬁ/o'o )

o, =a) IF o — .(18)
P,[(m-1)BEr]m1
Consideration the influence of transverse

deflections on the magnitude of the membrane force.

Let us consider the previous problem, but taking into
account the effect of transverse deflection’s influence on
the value of the membrane force. First, for large
deflections, it is necessary to take into account the
additionally occurring membrane force AP. Secondly, we
take into account the periodicity of the membrane force in
the case of arising oscillations, which intensifies the creep
of the rod in the axial direction. We investigate the
influence of the latter on the eigen transverse oscillations
of the rod.

Let the beam be preliminarily tensed by force Py,
then its elastic initial strain and displacement are

_R o, _RL
= , Uy = .
ES ES

We assume that the edges of the beam in tension are
further fixed. When held under creep conditions, the
membrane force will relax, and its value during the

holding time z is calculated by Eq.(8). When oscillations
occur, the strain of the beam neutral axis will change

au 1[aw)2
E=—+—| —|,

(19)

€o

20
ox 2\ oXx (20)

where u, w are the displacements of points of the
neutral axis in the axial and transverse directions when the
rod is bent.

The closing of the beam edges, taking into account
(20), will be written as an equality:

A= T%dx = —jgxdx+%j(%\/j2 dx .
0 0 0

And since the edges do not close each other

L 1L 6’\N 2
Jeax=1 j(&) dx.

0

(21)

The resulting equation shows that additional strains
at bending are determined by the deflections of the beam
axis during its oscillations. Consequently, a material of
tensed beam, when oscillations, will run due dynamic
creep mode [19]. The dynamic component of the
membrane force can be determined from (21).

Let us compose the equation of bending oscillations:

(22)

where o5 is membrane force, which can be
represented as an asymptotic expansion in a small
parameter u=27/CQ, where Q is a frequency of these

oscillations in the direction of beam axis:
06 =0°(t)5+uc*(£)5,

EW" —ooW"+ pSwi =0,

(23)
and o(x;t;£) depends upon two variables t and
t . . - .

&=—, so, that o°(t) is slow varying coefficient in
y7i

expansions (23), as well as o (X, &) is fast varying stress.

For axial strain during creep, let us write the
governing equation, taking into account elastic strain:
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(24)

where c(o) are creep strains, which connected with
stresses by Norton law:
¢=Bo", m>1.
From (24) considering (23) we obtain:

£(t)=2 Bl—j t)+uc (£)) d&, (25)

At the same time, we note that the average axial
strain of the beam axis does not change with time and
remains equal to &, determined by Eq. (19):

—I t)dx =¢,,

which, taking into account the first equation from
(23), allows us to write the relaxation equation for cyclic

deformation under creep conditions as follows:
4o gE j ()" d¢,

)+ o (26)

*(0)=0(c),
P(r)

where o(7)= , P(z) is calculated due to (8)

1)
and is equal to the value of stresses in the beam before
oscillations start.

However, from (21) we find, using the second
equality from (25):

g3

Here w=w(x,&) are deflections of the beam axis that

(27)

L
are fast varied with time;c?l:jal(x,g)dx is definite
0

average stress that occurs in the beam when it oscillates.
Let us write the beam oscillation equation in the
form

Ew" —G5w"+ psw,. =0, (28)

2

dw _ _
where w ., =d—§2, 0=U°+,uc71(§).

If the beam is hinged, then we represent its
deflections during oscillations in the form

w(x, &)= f(§)sin%x.

Next, we use the Galerkin method [20] to solve
equation (28). Let us first take into account that from (27)
it follows
°E

= 412 f (5)’

uc'

and
2
_ o 7TE .,
=0 + f . 29
G=0+ 5 (&) (29)
By use Galerkin method for Eq.(28), we obtain:
P(t
d f 1+ ()+Kf2 f=0, (30)
g P.

2
where %:(%J /E—(IS is angular frequency of
£

small oscillations of the beam without preliminary
tension; P(t)=&°0 is membrane force, which is
determined from the solution of Eq. (26), which describes

*

2
stress relaxation during dynamic creep; P, = El [%) is

Euler critical force for a rod in compression; K = %é .
Let us consider the solution of Eq. (30) in the form
f = Acoswé,
where A is amplitude and w is angular frequency of
oscillations.
Let us integrate equation (30) over the total
oscillation period T =27/w, by use Galerkin method.

We consider, that

27/w 27/w

| cos? wedé =7~ j cos“wfdé:s—”.
0 @ 0 @
We obtain
27w 2 P(t
I [d f2+w§(l+ﬁ+kf2]f}osw§d§=
o \d& P,

— Al @? 1+m —o? [P 3ka w? =0.
° P. o 4 ®

As a result, we have a dependence between the
frequency of nonlinear oscillations @ and the amplitude A,
which, under creep conditions, depends parametrically on
time:

@ =’ 1+§KA2+m )
° 4 P

*

(31)

We introduce the notation for the ratio of the value @
to the corresponding frequency of linear oscillations ay:

2
p? =[ﬁj 1 3ka PO
4 P

@y

s

In coordinates v, A we obtain a hard-type skeletal
curve for a fixed time t (Fig. 2).
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1 3
\Y >
Fig. 2 — Sceletal curve

Let us transform Eq.(26) taking into account the
relations found above:
2

yal(g)zzl_'f A2 cos? &, 0< & <1,,

W E % T°E A2 n
=807 5 J[1+ 5 pecost o] d(e),
o°(0)=0’(7)

The obtained relations determine the

relaxation.

rate of
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Conclusions. The paper presents approaches to
solving the problems of beam dynamics and deformation
in a new formulation, which includes consideration of
preliminary tension. Analytical dependences have been
obtained, which allow determining the influence of tensile
forces on oscillation frequencies, time to failure, and
relaxation rate. Dependencies between the creep
characteristics of the material and the time in which creep
holding influences the frequency values were established.
A skeletal curve of nonlinear oscillations during creep is
obtained.

The resulting dependencies can be used in the
assessment of dynamics, deformation and strength of
structural elements described by beam calculation
schemes.
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