DIAGNOSTICS OF THE PRESENCE OF A FATIGUE CRACK IN THE COMRESSOR BLADE USING THE SPECTRUM OF VIBRATION AMPLITUDES AT THE SUPERHARMONIC RESONANCE

In this study, the solution of the forced vibration response of a structural element with a fatigue crack was carried out using the finite element method to determine the influence of its presence on the flexural forced vibration behaviour of the compressor blade airfoil at the superharmonic resonance of the order 1/2. The blade airfoil with a low twisted angle was used as an object of investigation to perform the computational analysis. Its vibrations in the plane of minimum stiffness were excited by the kinematic displacement of root edge elements. The fatigue crack was modelled as a mathematical cut. Two locations of the crack were investigated – on the leading edge and convex side of the blade airfoil. The nonlinearity due to the intermittent contact of the crack surfaces, which is caused by the opening and closing of the crack during each vibration cycle, was taken into account by solving the contact problem. To quantify this kind of nonlinear dynamic behaviour, the vibration diagnostic parameter was defined as the displacement amplitude ratio of the dominant harmonics at the superharmonic resonance of the order 1/2. Based on the results of the calculations it has been found that regardless of the crack location, the ratio nature is the same for all vibration axes. However, with vibrations in the plane of minimum stiffness, the crack on the convex side of the airfoil has an opening mode propagation, which makes it possible to fix its location due to a sharp change in the ratio of the amplitudes of the dominant harmonics along the corresponding axis.

Keywords: compressor blade airfoil, breathing crack, forced vibration, superharmonic resonance, vibration diagnostic parameter.

Introduction. The presence of fatigue cracks in the complex structural system such as turbomachine may lead to dangerous effects for its safety and cause abnormal behaviour. Therefore, vibration analysis of structures with cracks operating under dynamic loading conditions is an important area of research due to the growing demands for reliable damage detection techniques. The presence of such damage not only causes a local change in the mechanical characteristics of the structure at its location, but it also affects in general on the structure [1]. Thus methods based on the dynamic behaviour of structures with fatigue cracks can be an effective means for damage detection in non-destructive tests.

Open crack and breathing crack models are the two main categories of crack models used in vibration-based detection methods. The first models assume that the crack in a structural element is open and remains open during vibration. The assumption is usually satisfied when the damage is rather large and avoids the difficulties resulting from the nonlinear behaviour of breathing crack. On the other hand, the breathing crack model is generally used in the case the damage occupies only a small portion of the cross-section of the structural element. In this case, it requires a nonlinear model to take into account its effect on the dynamic behaviour of the system. Consequently, vibration-based methods are also classified into two categories: linear and nonlinear approaches.

In the linear approach, the presence of damage in the structure is detected by monitoring the changes in modal parameters, such as natural frequency, and mode shape [2, 3]. Due to the low sensitivity of these indicators they usually require a rather large size of the damage in the system to provide an adequate identification [4].
In the study, a finite element method (FEM) is used. As in [9], for FE modelling of the blade airfoil under investigation with allowance for its design features, we divided it into portions. In that case, a linear eight-node finite element and its modifications were chosen for modelling. Previously they were used in solving similar problems for damaged blades, and rods of a rectangular and circular cross-section with fatigue cracks [11, 12]. A general view of the airfoil FE model is shown in Fig. 1a. The fatigue damage was simulated as a mathematical cut in two locations (Fig. 1b) – on the leading edge and convex side of the blade airfoil at the point $x_T = 10.5$ mm up from the root cross-section, which is 10% of the airfoil length. The damaged area is 10% of the airfoil cross-section area. The mutual non-penetration of crack faces was ensured by the introduction of the surface-surface contact elements, which makes it possible to take into account different contact conditions.

The forced vibrations of the FE models are described by the nonlinear differential equation:

$$
[M] \ddot{u} + [D] \dot{u} + [K] u = \{Q(t)\}
$$

where $[M], [D]$, and $[K]$ are the inertia and dissipation matrices, and the stiffness matrix of the system, respectively, $\{u\}, \{\dot{u}\}$, and $\{\ddot{u}\}$ are the column vectors of displacement, velocity, and acceleration, respectively, $\{Q(t)\}$ is the column vector of the external harmonic loading.

Due to the contact interaction of the crack faces during the vibrations, the stiffness matrix changes in time and is defined by the equation:

$$
[K] - \{\ddot{F}\} - \{F^k\} = 0
$$

where $\{\ddot{F}\}$ is the vector of nodal forces and $\{F^k\}$ is the vector of nodal forces occurring during the contact interaction of the crack faces.

The nonlinear equation (1) is solved by integrating with time using the Newmark method [13]:

$$
\begin{align*}
\{u\}_{t+\Delta t} &= \{u\}_t + [(1-k_1)\{\ddot{u}\}_t + k_1\{\ddot{u}\}_{t+\Delta t}] \Delta t; \\
\{\dot{u}\}_{t+\Delta t} &= \{\dot{u}\}_t + \{\ddot{u}\}_t \Delta t + \left[\frac{1}{2} - k_2\right]\{\ddot{u}\}_t + k_2\{\ddot{u}\}_{t+\Delta t}\right] \Delta t^2
\end{align*}
$$

where k_1 and k_2 are the Newmark integration parameters that determine the accuracy and robustness of the integration.

Investigation Results and Their Analysis. A set of numerical experiments was performed to determine the effect of the fatigue crack presence on the flexural forced vibration behaviour of the blade at the superharmonic resonance of the order 1/2 using the developed FE models of the selected assembly of blades and calculation procedure.

The calculations were performed for the case of a rigid coupling over the root edge elements of the airfoil.
The forced vibration was excited by kinematic displacement $Q_0 \sin(\omega t)$ of the specified elements with an amplitude $Q_0 = 10^{-3}$ m along axis Oy at the frequency, which denotes the first flexural mode of vibrations within the plane of its minimum stiffness.

The authors obtained the time dependencies $U_i(t)$ of the free end displacement of the blade airfoil by the Newmark method. Using the results of the harmonic analysis for the portions of these relations characterizing the stationary regime of vibrations, the amplitude and frequency characteristics were derived for the parameters of forced vibrations of the blade airfoil depending on the location of damage (Fig. 2). Here, A_1 – the amplitude value of the first (main) harmonic; ω – excitation frequency. The figure also shows the dependencies for an intact blade airfoil. The data analysis implies the changes in vibration frequency in comparison to the intact airfoil are 0.6% and 3% for the leading edge and convex side respectively, but the level of the amplitudes of the dominant harmonics for the selected locations of damage is the same. This is due to the different influence of the selected damage locations on the stiffness of the blade airfoil. The breathing effect of the damage, which located on the convex side of the airfoil, leads to the change of the airfoil stiffness during its vibration. On the first half-cycle of the vibration, when the damage is closed and its surfaces have full contact, the stiffness of the blade airfoil is equal to an intact one. In the second half-cycle, the damage is open. When the damage located on the leading edge, the contact of crack surfaces characterized by longitudinal shear. Therefore, such type of contact decreases the stiffness less significant, in comparison with the damage on the convex side.

Fig. 3 shows the spectrum of vibration amplitudes of damaged blade airfoil at the fundamental resonance for two locations of damage, where A_i – the amplitude value; i – a harmonic number. As we can see in the spectrum of vibration amplitudes, there are harmonics at frequencies that are multiples of $1/5$, 2, 3, 4, etc. excitation frequency, which corresponds to the fundamental frequency. Also, there is the harmonic of the static component ($i = 0$). From the obtained data it follows that the largest harmonics, after A_1, occur at $i = 0$ and 2, the amplitudes at $i = 1/2$ and 3 are equivalent. The higher harmonics in comparison with the presented are very small and their fixation is problematic.

Next, look into the possibility of excitation of the superharmonic resonance of the order $1/2$. Nonlinear resonance is excited at frequency close but not equal to half of the fundamental frequency.

Fig. 4 a presents the output signal of the free end of blade airfoil which is nonlinear and causes additional
harmonics in the spectrum of its vibrations (Fig. 4 b), the largest of which corresponds to the fundamental frequency and has the same order as the harmonics at the excitation frequency, whereas the level of other harmonics a 100 times less.

As mentioned earlier, the possibility of using multiple harmonics due to nonlinear effects caused by the presence of a breathing crack as a vibration diagnostic parameter has recently been the subject of a large number of studies. Moreover, to detect the presence of such type of damage, both their absolute values and ratio may be used. Therefore, in this work, we determined the ratio of the amplitudes of the first harmonic A_1 to the harmonic $A_{1/2}$ at the superharmonic resonance of the order 1/2.

As an example of the obtained results, in Fig. 5 the dependencies of the indicated ratio on the point of registration of vibrations (x_0) along the airfoil length is shown for two locations of the breathing crack. All calculations are presented for the first flexural mode of vibrations.

The analysis of the obtained results shows, regardless of the crack location, their nature is the same for all vibration axes. However, with vibrations in the plane of minimum stiffness, which are considered in this work, the crack on the convex side of the airfoil has an opening mode propagation, as previously stated, which makes it possible to fix its location due to a sharp change in the ratio of the amplitudes of the dominant harmonics along the Oy axis.

Conclusions. In this work, the authors show the ratio of harmonics at excitation frequencies that are multiples of the fundamental frequency can be used to diagnose the presence of fatigue crack. To locate the crack, it is necessary to excite the opening crack mode. In this case, in the neighbourhood of the crack, there will be a sharp change in the ratio of the amplitudes of the dominant harmonics at the superharmonic resonance of the order 1/2.

This publication was prepared within the framework of the research project “Development of methods for diagnosis and analysis of the failure causes and reduction of vibration stress level of the blades and their systems during operation of gas turbines”, which has received funding from the National academy of sciences of Ukraine under grant agreement No 240/2021-03/03.

References

Received 05.12.2021

About the Authors / Відомості про авторів / Сведения об авторах

Savchenko Kyrylo Valentynovych (Савченко Кирило Валентинович, Савченко Кирилл Валентинович) – Candidate of Technical Sciences, Senior Researcher of Oscillations and Vibration Reliability Department, G.S. Pisarenko IPS NAS of Ukraine, Kyiv; e-mail: savchenko@ipp.kiev.ua. ORCID: 0000-0002-9690-9758.

Zinkovskyi Anatolii Pavlovych (Зіньковський Анатолій Павлович, Зиньковский Анатолий Павлович) – Corresponding Member of NAS of Ukraine, Doctor of Technical Sciences, Professor, Head of Oscillations and Vibration Reliability Department, G.S. Pisarenko IPS NAS of Ukraine, Kyiv; e-mail: zinkovskii@ipp.kiev.ua. ORCID: 0000-0003-0803-7054.

Onyshchenko Yevheniia Oleksandriivna (Онищенко Євгенія Олександрівна, Онищенко Евгения Александровна) – Candidate of Technical Sciences, Senior Researcher of Oscillations and Vibration Reliability Department, G.S. Pisarenko IPS NAS of Ukraine, Kyiv; e-mail: onyshchenko@ipp.kiev.ua. ORCID: 0000-0001-7550-8544.

Kruts Vadym Oleksiiovych (Круц Вадим Олексійович, Круц Вадим Алексеевич) – Candidate of Technical Sciences, Senior Researcher of Oscillations and Vibration Reliability Department, G.S. Pisarenko IPS NAS of Ukraine, Kyiv; e-mail: kruts@ipp.kiev.ua. ORCID: 0000-0002-9066-047X.

Kabannyk Serhii Mykolaiovych (Кабанник Сергій Миколайович, Кабанник Сергей Николаевич) – Candidate of Technical Sciences, Senior Researcher of Oscillations and Vibration Reliability Department, G.S. Pisarenko IPS NAS of Ukraine, Kyiv; e-mail: kabannyk@ipp.kiev.ua. ORCID: 0000-0002-6315-1987.